• Title/Summary/Keyword: 3D Parametric Modeling

Search Result 135, Processing Time 0.032 seconds

Development of a Parametric Design System for Membrane Structures (연성 막구조의 파라메트릭 설계 시스템 개발)

  • Choi, Hyun-chul;Lee, Si Eun;Kim, Chee Kyeong
    • Journal of Korean Association for Spatial Structures
    • /
    • v.16 no.4
    • /
    • pp.29-36
    • /
    • 2016
  • The objective of this research is to development of a parametric design system for membrane structures. The parametric design platform for the spatial structures has been designed and implemented. Rhino3D is used as a 3D graphic kernel and Grasshopper is introduced as a parametric modeling engine. Modeling components such as structural members, loading conditions, and support conditions are developed for structural modeling of the spatial structures. The interface module with commercial structural analysis programs is implemented. An iterative generation algorithm for design alternatives is a part of the design platform. This paper also proposes a design approach for the parametric design of Spoke Wheel membrane structures. A parametric modeling component is designed and implemented. SOFiSTik is examined to interact with the design platform as the structural analysis module. The application of the developed interface is to design optimally Spoke Wheel Shaped Ductile Membrane Structure using parametric design. It is possible to obtain objective shape by controlling the parameter using a parametric modeling designed for shape finding of spoke wheel shaped ductile membrane structure. Recently, looking at the present Construction Trends, It has increased the demand of the large spatial structure. But, It requires a lot of time for Modeling design and the Structural analysis. Finally an optimization process for membrane structures is proposed.

3D Parametric Modeling of RC Piers and Development of Data Generation Module for a Structural Analysis with 3D Model of RC Piers (RC 교각의 3차원 매개변수 모델링 및 비선형 구조해석 입력 데이터 생성 모듈 구축)

  • Son, You-Jin;Shin, Won-Chul;Lee, Sang-Chul;Lee, Heon-Min;Shin, Hyun-Mock
    • Journal of KIBIM
    • /
    • v.3 no.3
    • /
    • pp.19-28
    • /
    • 2013
  • In Korea highway bridges, most piers are the type of one-column or multi-column ones. So, in this study, under an environment applying BIM so fast, to activate researches on two-column piers subjected to bidirectional seismic loading, a 3D parametric modeling method was selected when the model of two-column piers and one-column piers were formed. Also, interface module between input data in structural analysis and 3D model of RC pier was developed. The module can create the input data for non-linear structural analysis like material, geometric properties and additional coefficients.

3D Digital Restoration of Traditional Wooden Building Using Parametric Modeling (Parametric 모델링 방식을 이용한 전통목조건축물의 3D 디지털 복원)

  • Lee, Kang-Hoon;Cho, Sae-Hong
    • Journal of Korea Multimedia Society
    • /
    • v.12 no.8
    • /
    • pp.1164-1171
    • /
    • 2009
  • This paper proposes an efficient implementation way of traditional wooden building using Parametric modeling method which uses the relations of numerical value ratio between building materials. Building structures and order of construction for Geunjungjeon of Kyuungbok Palace is digitally implemented proving the efficiency of the suggested proposal. Although the existing digital modeling methods for traditional wooden building emphasize the exterior modeling of the building, our modeling method constructed numerous wooden materials and arranged those pieces orderly so that people can see the interior structures of the building which usually is beyond one's vision. The suggested Parametric modeling method, Multi-Object Texture Mapping, Physical Camera Restoration, and GI Renderer for implementing Geunjungjeon of Kyuungbok Palace can be practically used for digital implementation for other traditional wooden buildings.

  • PDF

Parametric Modeling Method for 3D Assembly Design of Parts Composing Superstructure Module on Modular Steel Bridge (모듈러 강교량 상부모듈 구성파트의 3차원 조립설계를 위한 파라메트릭 모델링 방법)

  • Lee, Sang Ho;An, Hyun Jung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.1
    • /
    • pp.35-46
    • /
    • 2013
  • A parametric modeling method, one of the core technology of BIM (Building Information Modeling), is proposed for efficient 3D assembly design among components of a superstructure module of modular steel bridge. Assembly system is classified into 3 levels as LoD (Level of Details) for 3D assembly design of the parts. Components forming 3D shape of the parts are identified and defined as parameters, variables depending on parameters, or constants independent of the parameters. Then, spatial assembly rules among the parts are defined according to the assembly system. Positional relations among the identified shape components are defined for mating spatial position and geometrical relations are defined for constraining degree of freedom on X, Y, and Z axis. Finally, a standardized template is designed by applying the rules to 3D based assembly design for the parts of the superstructure module. In addition, applicability of the parametric modeling method is demonstrated by testing the shape variation of the superstructure module according to changing the defined parameters.

Information Modeling of Modular Bridge Pier using BIM Based 3D-Model Library (BIM 기반 3차원 모델 라이브러리를 통한 모듈러 교각의 정보모델링)

  • Jo, Jae-Hun;Kim, Dong-Wook;Lee, Kwang-Myong;Nam, Sang-Hyeok
    • Journal of KIBIM
    • /
    • v.3 no.4
    • /
    • pp.11-18
    • /
    • 2013
  • Modular technology has become a major issue of the construction industries to enhance their productivity. Modular bridge construction generally requires the collaboration between the contractor, designer, fabricator and constructor. Therefore, a readily accessible information model based on BIM technology should be provided for their communication during a construction project life-cycle. In this study, BIM based 3D information modeling was carried out for the modular bridge pier. First, the product breakdown structure (PBS) and level of detail (LOD) of the pier were defined. Based on them, 3D models were created by using parametric modeling method. In addition, database was constructed for the exchange of geometry and property data of 3D models. Finally, application areas of 3D information model were suggested, including the quantity estimation and the 4D simulation.

3D Tunnel Modeling by Parametric Representation of Geometry (매개변수식 기하 표현법에 의한 3차원 터널 모델링)

  • 이형우;신대석
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.15 no.1
    • /
    • pp.33-42
    • /
    • 2002
  • A method of automatic 3D tunnel modeling is proposed. The proposed method used the parametric representation of geometry and a hierarchical and relational data structure. These two bases provide the generalization and extension for 3D tunnel modeling. Especially, these two fundamentals ion the basis iota representing the characteristics of the tunnel structure for analysis. The constant-curvature characteristic is exploited to generate 3D mesh on the tunnel surface. This is attributed to the advantage that any 2D automatic mesh generation algorithm can be applied to 3D mesh modeling.

Procedural Interface between Freehand Sketch-based Modeling System and Commercial MCAD (프리핸드 스케치 기반 모델링 시스템과 상업용 MCAD의 절차적 인터페이스)

  • Cheon, Sang-Uk;Mun, Du-Hwan;Kim, Byung-Chul;Han, Soon-Hung
    • Korean Journal of Computational Design and Engineering
    • /
    • v.13 no.4
    • /
    • pp.255-264
    • /
    • 2008
  • Research that reconstructs a 3D model from a freehand 2D sketch has gained attention since 1990s, when data integration in the CAD/CAPP/CAM/CNC chain was an important issue. However, 2D sketches in the conceptual design phase have not been integrated with the downstream CAD/CAPP/CAM/CNC chain. In this paper, we present a method to interface a freehand sketch modeling to commercial CAD systems by mapping a sketch modeling history to the macro parametric history. We use an extended ISO10303-112 standard to represent the modeling history in a gestural modeling system and translate sketch files to neutral macro files. Macro parametric translators are used to translate netural macro files to commercial CAD files.

Parametric Quantity Take-Off of Earthwork by Comparing the Use of Surface and Solid Models (Surface 및 Solid 방식의 비교를 통한 Parametric 기법의 토공물량산출 방법)

  • Hwang, Hee-Su;Lee, Jae-Hong;Kim, Tae-Young
    • Journal of KIBIM
    • /
    • v.8 no.1
    • /
    • pp.56-62
    • /
    • 2018
  • There exists no precedented case of quantity take-off, using parametric modeling, from BIM-based irregular structures. Civil 3D provides earthwork quantity take-off based on surface modeling. Generally, designers should enter data into the specification additionally after extracting quantity estimation from earthwork modeling design. The objective of this report is to suggest the method from quantity take-off to specification of BIM-based earthwork quantities. We intend to investigate earthwork take-off method by Civil3D and explain why parametric information extraction is required for quantity estimation and specification and how information of earthwork quantity based on solid and surface modeling is connected to open quantity take-off module. It is highly expected that this suggestion would be the practical methodology of earthwork quantity take-off and specification in the field of civil engineering.

Design and Constructability Improvement of 3D Concrete Formworks through Analysis of Construction Applications (3차원 콘크리트 거푸집의 설계 및 시공성 개선)

  • Park, Seong-Jun;Dong, Ngoc Son;Kang, Hwirang;Shim, Chang-Su
    • Journal of KIBIM
    • /
    • v.7 no.1
    • /
    • pp.1-8
    • /
    • 2017
  • Aesthetic design guidelines of bridges were developed in many countries. As iconic structures, bridges need to be attractive and durable as they serve many generations. In this paper, a new design process of concrete structures considering 3D shapes and texture was proposed. The 3D design needs to consider function, economy, advanced technology, tradition and local culture. 3D printers enable the combination of artistic design and engineering design for concrete structures. Parametric modeling with iconic design was utilized to produce 3D formworks. As a pilot project, a railway bridge girder was designed and the proposed technologies were applied. Detail requirements to improve constructability and quality of concrete surfaces were derived. From the pilot applications, design guidelines were suggested.

3D BIM Modeling of Temporary Structure for Earthwork using Parametric Technique (파라메트릭 기술을 이용한 토공용 임시 구조물의 3D BIM 모델링)

  • Tanoli, Waqas Arshad;Raza, Hassnain;Lee, Seung-Soo;Park, Sang-Il;Seo, Jong-won
    • Journal of KIBIM
    • /
    • v.8 no.2
    • /
    • pp.1-9
    • /
    • 2018
  • Nowadays Building Information Modeling (BIM) is a significant source of sharing project information in the construction industry. This method of sharing the information enhances the project understanding among stakeholders. Modeling of information using BIM is becoming an essential part of many construction projects around the globe. Despite rapid adoption of BIM in construction industry still, some sectors of the industry like earthwork have not yet reaped its full benefits. BIM has brought a paradigm shift through identification and integration of the roles and responsibilities of project participants on a single platform. BIM is a 3D model-based process which provides the insight into the efficient project planning and design. The 3D modeling can also be used significantly for the design of temporary structures in an earthwork project. This paper presents the quantity take-off methodology and parametric modeling technique for creating the temporary structures using 3D BIM process. A case study is conducted to implement the proposed temporary structure family design on a real site project. The study presented is beneficial for the earthwork project stakeholders to extract the relevant information using 3D BIM models in a project. It provides an opportunity to calculate the quantity of material required for a project accurately.