• Title/Summary/Keyword: 3D Object Cutting

Search Result 26, Processing Time 0.021 seconds

Development and Evaluation of System for 3D Visualization Model of Biological Objects (3차원 생물체 가시화 모델 구축장치 개발 및 성능평가)

  • Hwang, H.;Choi, T. H.;Kim, C. H.;Lee, S. H.
    • Journal of Biosystems Engineering
    • /
    • v.26 no.6
    • /
    • pp.545-552
    • /
    • 2001
  • Nondestructive methods such as ultrasonic and magnetic resonance imaging systems have many advantages but still much expensive. And they do not give exact color information and may miss some details. If it is allowed to destruct a biological object to obtain interior and exterior informations, 3D image visualization model from a series of sliced sectional images gives more useful information with relatively low cost. In this paper, a PC based automatic 3D visualization system is presented. The system is composed of three modules. The first module is the handling and image acquisition module. The handling module feeds and slices a cylindrical shape paraffin, which holds a biological object inside the paraffin. And the paraffin is kept being solid by cooling while being handled. The image acquisition modulo captures the sectional image of the object merged into the paraffin consecutively. The second one is the system control and interface module, which controls actuators for feeding, slicing, and image capturing. And the last one is the image processing and visualization module, which processes a series of acquired sectional images and generates a 3D volumetric model. To verify the condition for the uniform slicing, normal directional forces of the cutting edge according to the various cutting angles were measured using a strain gauge and the amount of the sliced chips were weighed and analyzed. Once the 3D model was constructed on the computer, user could manipulate it with various transformation methods such as translation, rotation, and scaling including arbitrary sectional view.

  • PDF

A New Object Region Detection and Classification Method using Multiple Sensors on the Driving Environment (다중 센서를 사용한 주행 환경에서의 객체 검출 및 분류 방법)

  • Kim, Jung-Un;Kang, Hang-Bong
    • Journal of Korea Multimedia Society
    • /
    • v.20 no.8
    • /
    • pp.1271-1281
    • /
    • 2017
  • It is essential to collect and analyze target information around the vehicle for autonomous driving of the vehicle. Based on the analysis, environmental information such as location and direction should be analyzed in real time to control the vehicle. In particular, obstruction or cutting of objects in the image must be handled to provide accurate information about the vehicle environment and to facilitate safe operation. In this paper, we propose a method to simultaneously generate 2D and 3D bounding box proposals using LiDAR Edge generated by filtering LiDAR sensor information. We classify the classes of each proposal by connecting them with Region-based Fully-Covolutional Networks (R-FCN), which is an object classifier based on Deep Learning, which uses two-dimensional images as inputs. Each 3D box is rearranged by using the class label and the subcategory information of each class to finally complete the 3D bounding box corresponding to the object. Because 3D bounding boxes are created in 3D space, object information such as space coordinates and object size can be obtained at once, and 2D bounding boxes associated with 3D boxes do not have problems such as occlusion.

Development of Automatic System for 3D Visualization of Biological Objects

  • Choi, Tae Hyun;Hwnag, Heon;Kim, Chul Su
    • Agricultural and Biosystems Engineering
    • /
    • v.1 no.2
    • /
    • pp.95-99
    • /
    • 2000
  • Nondestructive methods such as ultrasonic and magnetic resonance imaging systems have many advantages but still much expensive. And they do not give exact color information and may miss some details. If it is allowed to destruct some biological objects to get interior and exterior informations, constructing 3D image form a series of slices sectional images gives more useful information with relatively low cost. In this paper, a PC based automatic 3D model generator was developed. The system was composed of three modules. The first module was the object handling and image acquisition module, which fed and sliced the object sequentially and maintains the paraffine cool to be in solid state and captures the sectional image consecutively. The second one was the system control and interface module, which controls actuators for feeding, slicing, and image capturing. And the last was the image processing and visualization module, which processed a series of acquired sectional images and generated 3D volumetric model. Handling module was composed of the gripper, which grasped and fed the object and the cutting device, which cuts the object by moving cutting edge forward and backward. sliced sectional images were acquired and saved in a form of bitmap file. 2D sectional image files were segmented from the background paraffine and utilized to generate the 3D model. Once 3-D model was constructed on the computer, user could manipulated it with various transformation methods such as translation, rotation, scaling including arbitrary sectional view.

  • PDF

3D Segmentation of a Diagnostic Object in Ultrasound Images Using LoG Operator (초음파 영상에서 LoG 연산자를 이용한 진단 객체의 3차원 분할)

  • 정말남;곽종인;김상현;김남철
    • Journal of Biomedical Engineering Research
    • /
    • v.24 no.4
    • /
    • pp.247-257
    • /
    • 2003
  • This paper proposes a three-dimensional (3D) segmentation algorithm for extracting a diagnostic object from ultrasound images by using a LoG operator In the proposed algorithm, 2D cutting planes are first obtained by the equiangular revolution of a cross sectional Plane on a reference axis for a 3D volume data. In each 2D ultrasound image. a region of interest (ROI) box that is included tightly in a diagnostic object of interest is set. Inside the ROI box, a LoG operator, where the value of $\sigma$ is adaptively selected by the distance between reference points and the variance of the 2D image, extracts edges in the 2D image. In Post processing. regions of the edge image are found out by region filling, small regions in the region filled image are removed. and the contour image of the object is obtained by morphological opening finally. a 3D volume of the diagnostic object is rendered from the set of contour images obtained by post-processing. Experimental results for a tumor and gall bladder volume data show that the proposed method yields on average two times reduction in error rate over Krivanek's method when the results obtained manually are used as a reference data.

PROTOTYPE AUTOMATIC SYSTEM FOR CONSTRUCTING 3D INTERIOR AND EXTERIOR IMAGE OF BIOLOGICAL OBJECTS

  • Park, T. H.;H. Hwang;Kim, C. S.
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2000.11b
    • /
    • pp.318-324
    • /
    • 2000
  • Ultrasonic and magnetic resonance imaging systems are used to visualize the interior states of biological objects. These nondestructive methods have many advantages but too much expensive. And they do not give exact color information and may miss some details. If it is allowed to destruct some biological objects to get the interior and exterior information, constructing 3D image from the series of the sliced sectional images gives more useful information with relatively low cost. In this paper, PC based automatic 3D model generator was developed. The system was composed of three modules. One is the object handling and image acquisition module, which feeds and slices objects sequentially and maintains the paraffin cool to be in solid state and captures the sectional image consecutively. The second is the system control and interface module, which controls actuators for feeding, slicing, and image capturing. And the last is the image processing and visualization module, which processes a series of acquired sectional images and generates 3D graphic model. The handling module was composed of the gripper, which grasps and feeds the object and the cutting device, which cuts the object by moving cutting edge forward and backward. Sliced sectional images were acquired and saved in the form of bitmap file. The 3D model was generated to obtain the volumetric information using these 2D sectional image files after being segmented from the background paraffin. Once 3-D model was constructed on the computer, user could manipulate it with various transformation methods such as translation, rotation, scaling including arbitrary sectional view.

  • PDF

A Tangential Cutting Algorithm for Rapid Prototyping (쾌속조형을 위한 효과적인 경사절단 알고리즘 개발)

  • 공용해;엄태준;주영철;안덕상
    • Proceedings of the IEEK Conference
    • /
    • 2002.06c
    • /
    • pp.55-58
    • /
    • 2002
  • Rapid Prototyping(RP) systems, that fabricate objects with slicers, typically bear staircase artifacts when slices has a certain degree of thickness. A tangential cutting algorithm is developed in order to remove surface distortion as well as to generate smooth laser-cutting trajectory. For this, an energy function is defined with tangential line length and distance between tangential line and middle contour. Then, the energy is minimized to generate effective tangential line segments. The proposed algorithm is tested and verified on 3D object samples and the results show that the generated tangential lines effectively approximate layer surface and make laser trajectory smooth.

  • PDF

An Interactive 3D Mesh Editing System for Printing Object Larger Than the Printing Volume of 3D Printer (3차원 프린터의 출력 볼륨보다 큰 물체를 출력하기 위한 인터랙티브 3차원 메쉬 편집 시스템)

  • Chu, Chang Woo;Kim, Kap Kee;Park, Chang Joon;Choi, Jin Sung
    • Journal of Korea Multimedia Society
    • /
    • v.19 no.8
    • /
    • pp.1619-1625
    • /
    • 2016
  • Recently, as the public interests about the 3D printing technology are increased, various kinds of 3D printers are being released. But, they are limited to use because they cannot fabricate an object which is larger than the printer's printing volume. To relieve this problem, we propose an interactive 3D mesh editing system for 3D printing the object that is larger than the printing volume. The proposed 3D editing system divides the input 3D mesh using the user's line drawings defining cutting planes and it attaches various connectors. The output meshes are guaranteed to fabricate without post-processing. The printed parts can be assembled using the connectors. Our proposed system has an advantage that it can be used easily by non-professional 3D printer users.

Composing Technology of Irregular Triangulate Network by Object Attribute in 4D System for Civil Engineering Project (토목시설 지형정보의 4D시스템 구현을 위한 객체속성별 삼각망 구축기술)

  • Kang Leen-Seok;Jee Sang-Bok;Kwak Joong-Min
    • Korean Journal of Construction Engineering and Management
    • /
    • v.6 no.1 s.23
    • /
    • pp.65-72
    • /
    • 2005
  • The 3D objects far representing artificial element in building project can be easily organized in 4D system. However, the civil engineering projects need a composing technology of irregular triangulate network because the projects generally include earthwork of large scale that consists of cutting, filling, and excavating work. It Is very difficult to represent earthwork status as 3D object type because the earthwork in highway or railway projects is being progressed on the natural geographical features. That is, a composing technology of irregular triangulate networks necessary function to simulate natural site condition as 3D object in 4D system. This study suggests a new composing technology of irregular triangulate network that 3D objects can be automatically generated by attribute in each layer.

Heated temperature and Range of the Oxy-acetylene Cutting Reinforcing Bar by Simulation and Experiment (시뮬레이션과 실험에 의한 산소절단기 절단시 철근의 수열온도 분포)

  • Kim, Bong-Joo;Kim, Jae-Hun;Cho, Byoung-Hoo
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.8 no.2
    • /
    • pp.1-5
    • /
    • 2008
  • The object of this experimental and simulation study is to find out heated temperature and range from the Oxy-acetylene cutting point of reinforcing bars (D10, D13, D16, D19, D22, D25 for each cases of SD3O and SD40) in room temperature ($20{\sim}22^{\circ}C$). This cutting is under the condition that a skilled worker cut one bar per a time. The results are these. 1. The temperature of the point 1 of reinforcing bars cut with Oxy-acetylene cutter is over 700$^{\circ}C$ under 1000$^{\circ}C$, but the temperature of the point 2 of reinforcing bars cut with Oxy-acetylene cutter is under 200$^{\circ}C$ 2. The temperature of the point that is apart 2cm from Oxy-acetylene cutting point is not over 200$^{\circ}C$, so reinforcing bars has not transform to be brittle. The results of simulation for temperatures of the each point apart from Oxy-acetylene cutting point is similar to upper experimental results.

Active vision을 이용한 곡면의 형상정보 획득 및 NC가공 시스템

  • 손영태;최영
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1992.04a
    • /
    • pp.256-261
    • /
    • 1992
  • Acquisition of 3D points is an essential process for modelling of physical 3D objects. Although Coordinate Measuring Machine(CMM) is most accurate for this purpose, it is very time consuming. To enhance the data aquisition speed for scuptured surfaces, active vision with reflecctometric method was used for our system. A fter the data acquisition, the system automatically generates cutting tool path for the 3-axis milling of the object. The fullyintegrated system from the data acquisition to the NC-code generation was implemented with IBN-PC/386 and necessary hardwears.