• Title/Summary/Keyword: 3D Measurement

Search Result 3,595, Processing Time 0.028 seconds

3D Calibration Method on Large-Scale Hull Pieces Profile Measurement using Multi-Slit Beams (선박용 곡판형상의 실시간 측정을 위한 다중 슬릿빔 보정법)

  • Kim, ByoungChang;Lee, Se-Han
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.11
    • /
    • pp.968-973
    • /
    • 2013
  • In the transportation industry, especially in the shipbuilding process, 3D surface measurement of large-scale hull pieces is needed for fabrication and assembly. We suggest an efficient method for checking the shape of curved plates under the forming operation with short time by measuring 3D profiles along the multi lines of the target surface. For accurate profile reconstruction, 2D camera calibration and 3D calibration using gauge blocks were performed. The evaluation test shows that the measurement accuracy is within the boundary of tolerance required in the shipbuilding process.

3-D Measurement of LED Packages Using Phase Measurement Profilometry (위상측정법을 이용한 LED Package의 3차원 형상 측정)

  • Koo, Ja-Myoung;Cho, Tai-Hoon
    • Journal of the Semiconductor & Display Technology
    • /
    • v.10 no.1
    • /
    • pp.17-22
    • /
    • 2011
  • LEDs(Light Emitting Diodes) are becoming widely used and increasingly in demand. Quality inspection of the LEDs has become more important. Two-dimensional inspection systems are limited in inspection capability, so threedimensional(3-D) inspection systems are needed. In this paper, a cost-effective and simple 3-D measurement system of LED packages using phase measuring profilometry(PMP) is proposed. The proposed system uses a pico projector to project sinusoidal fringe patterns and to shift phases instead of piezocrystal. It was evaluated using extremely accurate gauge blocks, yielding excellent repeatability of about 12 um(3-sigma). 3-D measurements of various LED packages were performed to demonstrate the applicability and efficiency of the proposed system.

Exploratory analysis of 3D stereoscopic video measurement (3D 영상 평가를 위한 탐색적 분석)

  • Chung, Dong Hun;Yang, Ho Cheol
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.6 no.4
    • /
    • pp.225-235
    • /
    • 2010
  • People are getting more interested in 3D stereoscopic movie, but due to the sudden concern, there is less research how 3D stereoscopic movie influence on people. The present research aims at developing 3D stereoscopic movie measurement. For this, we tested three variables which are perceived functionality, impression, and presence. Perceived functionality is defined as how people perceive functions of 3D stereoscopic movie for instance depth, and impression is defined as how people integrate various information as a total image. Finally, presence is a psychological state that individual's perception fails to accurately acknowledge the role of the technology in the experience. As a result, perceived functionality consists of four factors, impression consists of eight factors, and presence consists of three factors. As an exploratory research, we cannot guarantee the validity of the measurement, but as a seminal research it is worthwhile to pay attention.

3-D Profile Measurement System of Live Human Faces for the '93 Taejon Expo Kumdori Robot Scupltor (93 대전엑스포 꿈돌이 조각가로보트의 인물형상 측정시스템)

  • 김승우;박현구;김문상
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.3
    • /
    • pp.670-679
    • /
    • 1995
  • This paper presents the 3-D profile measurement system of live human faces, which was developed specially for 'KUMDORI sculptor robot' of the '93 Taejon Exposition. '93 Taejon EXPO. The basic principle for measurement adopts the slit beam projection which is a method of measuring 3-D surface profiles using geometric optics between the slit beam and the CCD camera. Since the slit beam projection consumes long measuring time, it is unfit to measure the 3-D profiles of living objects as human. Therefore, the projection type slit beam method which consumes short measuring time is newly suggested. And an algorithm to reconstruct the 3-D profile from the deformed images using finite approximated calibration is suggested and practically implemented. The projection type slit beam method was applied to spectators in a period of '93 Taejon EXPO. The measurement results show that the technique is suitable for 3-D face profile measurement on a living body.

Design of Brassiere Pattern for Big Size Breast Women -Based on 3D Breast Scanning Data- (유방이 큰 여성을 위한 브래지어 패턴 설계 -3차원 유방 형상 자료를 중심으로-)

  • Han, Chohee;Yi, Kyong-Hwa
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.43 no.2
    • /
    • pp.204-214
    • /
    • 2019
  • A CAD program has recently been introduced that can be directly developed into a three-dimensional human body shape and made into a pattern. It is possible to fabricate a bra that reflects the volume and surface area of the breast; however, it still needs to be verified. This study investigates the average size and shape of 20 big-breasted women and designs a brassiere pattern for women with large breasts using a 3D Flattening function of OptiTex PDS v15.6. In addition, the study verifies the reliability of the proposed method compared to a conventional brassiere pattern. The study results are as follows. First, the three dimensional measurement values were smaller than the direct measurement dimensions when the three dimension measurement dimensions of the subjects were compared with the direct measurement dimensions, the replica measurement dimensions and the three dimensional measurement dimensions. Second, the 3D flattening pattern reflects the actual shape, length, and area of the actual breast when comparing a brassiere pattern using a 3D shape and pattern reflecting the direct measurement.

A Study on the Calibration of Shape Measurement System Using Digital moire (Digital moire 형상측정 시스템의 보정에 관한 연구)

  • 유원재;김도훈;안재웅;강영준;노형민
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.199-202
    • /
    • 2002
  • Moire topography method is a well-known non-contacting 3-D measurement method. Recently, the automatic 3-D measurement by moire topography has been required since the method was frequently applied to the engineering and medical fields. 3-D measurement using digital projection moire topography is very attractive because of its high measuring speed and high sensitivity. In this paper, using different N-bucket algorithm method of digital projection moire topography is tested to measuring object with the 2$\pi$-ambiguity problem. Experimental results prove that the proposed scheme is capable of finding measurement errors that decreased more by using the flour-three step algorithm method than the same step in the phase shifting of different pitchs.

  • PDF

Comparative Analysis of 3D Laser Scanning and MEP Layout for Measurement of Horizontal Displacement of Structures (구조물 수평변위 계측을 위한 3D Laser scanning과 MEP layout의 비교 분석)

  • Shim, Hak-Bo;Seok, Won-Kyun;Park, Soon-Jeon
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2020.11a
    • /
    • pp.183-183
    • /
    • 2020
  • MEP layout and 3D Laser scanning are widely used equipment for displacement measurement in construction site. In this study, MEP layout and 3D Laser scanning were used to measure the lateral displacement of the same structure, and then the advantages and disadvantages of each were compared and analyzed. In general, it has been shown that MEP layout can save a lot of time compared to 3D Laser scanning. And it was found that the lateral displacement measurement results measured at a distance of 15m were similar to each other.

  • PDF

Component Specification of Physical Measurement Units in Web3D (웹3D에서의 물리적 측정 단위 컴포넌트 명세)

  • Kim, Su-Hyun;Lee, Myeong-Won
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.15 no.6
    • /
    • pp.454-458
    • /
    • 2009
  • The technology of virtual environments has been developed with better-quality appearance on a computer display in mind, but without consideration for objects' precise measurements in physical units. With the increased application of computer graphics in a variety of areas, there is a need for precise measurement functionality in addition to visualization. This paper describes the definition of physical properties using measurement units for X3D based virtual objects, to provide their precise physical information in virtual environments. To this end, we have included the physical property node in the X3D specification. The physical measurement units, such as length, mass, time, temperature, etc., are based on SI units (International System of Units).

An Efficient 3D Measurement Method that Improves the Fringe Projection Profilometry (Fringe Projection Profilometry를 개선한 효율적인 3D 측정 기법)

  • Kim, Ho-Joong;Cho, Tai-Hoon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.10
    • /
    • pp.1973-1979
    • /
    • 2016
  • As technologies evolve, diverse 3D measurement techniques using cameras and pattern projectors have been developed continuously. In 3D measurement, high accuracy, fast speed, and easy implementation are very important factors. Recently, 3D measurement using multi-frequency fringe patterns for absolute phase computation has been widely used in the fringe projection profilometry. This paper proposes an improved method to compute the object's absolute phase using the reference plane's absolute phase and phase difference between the object and the reference plane. This method finds the object's absolute phase by adding the difference between the reference plane's wrapped phase and the object's wrapped phase to the reference plane's absolute phase already obtained in the calibration stage. Through this method, there is no need to obtain multi-frequency fringe patterns about new object for the absolute phase computation. Instead, we only need the object's phase difference relative to the reference planes's phase in the measurement stage.