• Title/Summary/Keyword: 3D Indoor Environment

Search Result 143, Processing Time 0.024 seconds

Characterization of Summertime Aerosol Particles Collected at Subway Stations in Seoul, Korea Using Low-Z Particle Electron Probe X-ray Microanalysis

  • Kim, Bo-Wha;Jung, Hae-Jin;Song, Young-Chul;Lee, Mi-Jung;Kim, Hye-Kyeong;Kim, Jo-Chun;Sohn, Jong-Ryeul;Ro, Chul-Un
    • Asian Journal of Atmospheric Environment
    • /
    • v.4 no.2
    • /
    • pp.97-105
    • /
    • 2010
  • A quantitative single particle analytical technique, denoted low-Z particle electron probe X-ray microanalysis (low-Z particle EPMA), was applied to characterize particulate matters collected at two underground subway stations, Jegidong and Yangje stations, in Seoul, Korea. To clearly identify the source of the indoor aerosols in the subway stations, four sets of samples were collected at four different locations within the subway stations: in the tunnel; at the platform; near the ticket office; nearby outdoors. Aerosol samples collected on stages 2 and 3 ($D_p$: $10-2.5\;{\mu}m$ and $2.5-1.0\;{\mu}m$, respectively) in a 3-stage Dekati $PM_{10}$ impactor were investigated. Samples were collected during summertime in 2009. The major chemical species observed in the subway particle samples were Fe-containing, carbonaceous, and soil-derived particles, and secondary aerosols such as nitrates and sulfates. Among them, Fe-containing particles were the most popular. The tunnel samples contained 85-88% of Fe-containing particles, with the abundance of Fe-containing particles decreasing as the distances of sampling locations from the tunnel increased. The Fe-containing subway particles were generated mainly from mechanical wear and friction processes at rail-wheel-brake interfaces. Carbonaceous, soil-derived, and secondary nitrate and/or sulfate particles observed in the underground subway particles likely flowed in from the outdoor environment by human activities and the air-exchange between the subway system and the outdoors. In addition, since the platform screen doors (PSDs) limit air-mixing between the tunnel and the platform, samples collected at the platform at the Yangjae station (with PSDs) showed a marked decrease in the relative abundances of Fe-containing particles compared to the Jegidong station (without PSDs).

Health Risk Factors and Ventilation Improvements in Welding Operation at Large-sized Casting Process (대형 주물공정 용접작업장의 건강 위해인자 및 환기 개선)

  • Jung, Jong Hyeon;Jung, Yu Jin;Lee, Sang Man;Lee, Jung Hee;Shon, Byung Hyun;Lim, Hyun Sul
    • Clean Technology
    • /
    • v.20 no.2
    • /
    • pp.171-178
    • /
    • 2014
  • In this study we have examined the health risk factors and analyzing data of laborers working at the welding operation at large-sized casting process. In order to improve the working environment of workplace, an effective ventilation method was proposed after performing CFD (computational fluid dynamics) modeling and measurement of pollutants. As a result of examining the health risk factors of workers, oxidized steel dust is the main pollution source in the company A, welding fume in the companies B and C, and welding fume and oxidized steel dust in the company D. The fume concentration in the workers' breathing zone was $0.05{\sim}4.37mg/m^3$, and the fume concentration in the indoor air at the welding process was $0.13{\sim}7.54mg/m^3$. From a result of CFD, a local exhaust with an exhaust duct adjacent to welding point was found to be most effective in case of the exhaust process. In case of air supply, we found that a desired location of air supply fan would be at the end of the opening. If a standardizing the ventilation system for tunnel-type semi-enclosed space at a large-sized casting process is introduced in welding work places in the future, it would be more effective to protect the health of welding workers working at the casting industry and shipbuilding industry and improve the work environment.

Vision-based Real-Time Two-dimensional Bar Code Detection System at Long Range (비전 기반 실시간 원거리 2차원 바코드 검출 시스템)

  • Yun, In Yong;Kim, Joong Kyu
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.9
    • /
    • pp.89-95
    • /
    • 2015
  • In this paper, we propose a real-time two-dimensional bar code detection system even at long range using a vision technique. We first perform short-range detection, and then long-range detection if the short-range detection is not successful. First, edge map generation, image binarization, and connect component labeling (CCL) are performed in order to select a region of interest (ROI). After interpolating the selected ROI using bilinear interpolation, a location symbol pattern is detected as the same as for short-range detection. Finally, the symbol pattern is arranged by applying inverse perspective transformation to localize bar codes. Experimental results demonstrate that the proposed system successfully detects bar codes at two or three times longer distance than existing ones even at indoor environment.

A Study on XR Handball Sports for Individuals with Developmental Disabilities

  • Byong-Kwon Lee;Sang-Hwa Lee
    • Journal of the Korea Society of Computer and Information
    • /
    • v.29 no.6
    • /
    • pp.31-38
    • /
    • 2024
  • This study proposes a novel approach to enhancing the social inclusion and participation of individuals with developmental disabilities. Utilizing cutting-edge virtual reality (VR) technology, we designed and developed a metaverse simulator that enables individuals with developmental disabilities to safely and conveniently experience indoor handicapped handball sports. This simulator provides an environment where individuals with disabilities can experience and practice handball matches. For the modeling and animation of handball players, we employed advanced modeling and motion capture technologies to accurately replicate the movements required in handball matches. Additionally, we ported various training programs, including basic drills, penalty throws, and target games, onto XR (Extended Reality) devices. Through this research, we have explored the development of immersive assistive tools that enable individuals with developmental disabilities to more easily participate in activities that may be challenging in real-life scenarios. This is anticipated to broaden the scope of social participation for individuals with developmental disabilities and enhance their overall quality of life.

A Study on the Technology Development of User-based Home Automation Service (사용자 위치기반 홈오토메이션 서비스 기술 개발에 관한 연구)

  • Lee, Jung-Gi;Lee, Yeong-Seok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.3
    • /
    • pp.327-332
    • /
    • 2017
  • As Internet of Things (IoT) technology advances, there is a growing demand for location-based services (LBSs) to identify users' mobility and identity. The initial LBS system was mainly used to measure position information by measuring the phase of a signal transmitted from a global positioning system (GPS) satellite or by measuring distance to a satellite by tracking the code of a carrier signal. However, the use of GPS satellites is ineffective, because it is difficult to receive satellite signals indoors. Therefore, research on wireless communications systems like ultra-wide band (UWB), radio frequency identification (RFID), and ZigBee are being actively pursued for location recognition technology that can be utilized in an indoor environment. In this paper, we propose an LBS system that includes the 2.45GHz band for chirp spread spectrum (CSS), and the 3.1-10.6GHz band and the 250-750MHz bands for UWB using the IEEE 802.15.4a standard for low power-based location recognition. As a result, we confirmed that the 2.45GHz Industrial, Scientific and Medical (ISM) band RF transceiver and the ranging function can be realized in the hardware and has 0dBm output power.

Measurement of Vertical-Directional DTV Signal Level Using a Multi-Copter (멀티콥터를 이용한 수직방향 DTV 신호 레벨 측정)

  • Park, Hyung-Do;Lim, Sol;Kim, Dae Jin
    • Journal of Broadcast Engineering
    • /
    • v.19 no.3
    • /
    • pp.372-384
    • /
    • 2014
  • DTV field tests have been performed to measure field strength and to check reception ratio on indoor and outdoor sites. They use an antenna of 9m to measure DTV signal in case of outdoor measurement on the road. Modern skyscrapers require the analysis of vertical-directional wave propagation by measuring vertical-directional DTV signal. Even if the field strength is above the reception threshold of $43dB{\mu}V/m$, the reception is impossible in case of strong multi-path or high impulse noise. So, vertical-directional field measurement is essential in environment of tall buildings. In this paper, we developed an octo type multi-copter to measure vertical-directional DTV signal level. A compact and portable DTV signal level meter, an antenna, a microwave transmitter for data transmission, and a recording equipment are equipped in the multi-copter. Three different sites are selected to test the measurement system. Developed measurement system using the multi-copter is very useful in measuring vertical-directional DTV signal, especially in apartments, non-accessible area by vehicles, and forbidden areas.

Test of Insecticidal Efficacy of Some Commercial Natural Products against Trialeurodes vaporariorum(Homoptera : Aleyrodidae), Bemisia tabaci(Homoptera : Aleyrodidae), and Spodoptera litura(Lepidoptera : Noctuidae)

  • Jeong, Hyung-Uk;Kim, Man-Il;Chang, Sung-Kwon;Oh, Hyung-Keun;Kim, Ik-Soo
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.18 no.2
    • /
    • pp.105-112
    • /
    • 2009
  • The greenhouse whitefly, Trialeurodes vaporariorum (Westwood) and the sweet potato whitefly, Bemisia tabaci (Gennadius) are serious insect pests that have a wide host range including cucumber, tomato, and pepper. In this study, we tested larvicidal efficacy of several on-the-market environment-friendly agricultural materials (EFAM) to select the effective products after the target pests were stabilized in indoor rearing condition. The developmental periods of two whiteflies are as follows: in the case of T. vaporariorum, egg duration is 9.6 days and nymph is 18.9 days, and in the case of B. tabaci, egg duration is 7.4 days and nymph is 15.2 days under $25^{\circ}C$ with relative humidity (RH) of $60{\pm}5%$ and a photoperiod of 16 L:8D. The total period of T. vaporariorum was 5 days longer than B. tabaci. Among 22 EFAMs six products showed more than 60% of insecticide efficacy against T. vaporariorum BTV B, BTV D, BTV G, BTV L, BTV M, and BTV S. On the other hand, seven EFAM products showed over 60% of insecticide efficacy against B. tabaci BTV D, BTV G, BTV K, BTV L, BTV M, BTV N, and BTV U. In the case of Spodptera litura previously, 16 EFAMs were tested against $2^{nd}$ instar S. litura, and six EFAMs were found to have more than 90% efficacy. Test of these six EFAMs against entire larval stages were performed in this study. Although some of these products showed still more than 90% of insecticidal efficacy against up to $3^{rd}$ instar larvae, the efficacy of these EFAMs sharply decreased as ages increase, resulting in less than 60% of efficacy of the products at most. This result indicates the difficulty to control S. litura with the on-the-market EFAMs alone under economic injury level. Collectively, it is required to find more EFAMs, and find alternative method, and combined way of controlling to control those insect pests tested in this study.

Lead, Mercury and Cadmium Concentration in Blood and Related Factors among Korean Preschoolers (국내 3-7세 어린이의 혈중 납, 수은, 카드뮴 농도와 관련요인)

  • Seo, Ju-Hee;Kim, Byoung-Gwon;Kim, Yu-Mi;Kim, Rock-Bum;Chung, Jin-Yong;Hong, Young-Seoub
    • Journal of Environmental Health Sciences
    • /
    • v.40 no.4
    • /
    • pp.279-293
    • /
    • 2014
  • Objectives: Children are more susceptible to heavy metal toxicity than adults. The purpose of this study was to evaluate heavy metal concentrations in the blood of Korean preschoolers and investigate the association between metals in blood and related factors. Methods: A total of 512 subjects from 36 to 83 months of age were sampled. A questionnaire survey was performed and the levels of lead, mercury and cadmium were measured in the blood samples of all subjects. Their parents were interviewed in order to obtain information on basic characteristics, dietary patterns, socio-economic factors, and indoor/outdoor environment of the preschoolers. Multiple linear regression was used to analyze the association between the above factors and lead, mercury or cadmium concentrations. Results: The geometric mean concentrations of lead, mercury and cadmium in the blood were $1.45{\pm}1.58{\mu}g/dL$, $2.14{\pm}1.74{\mu}g/dL$ and $0.23{\pm}1.91{\mu}g/dL$, respectively. Results from multiple linear regression analysis showed that blood lead levels were associated with birth weight and paternal smoking status. Daily mercury intake from food and maternal education were also shown to influence mercury concentrations in blood. Also, blood cadmium concentrations were associated with maternal age and having a bus garage near the place of residence. Conclusion: This study suggests that smoking status, dietary patterns and the environmental status near the residence should be considered as important factors for preventable sources of heavy metal exposure in preschoolers.

Analysis of Eye-safe LIDAR Signal under Various Measurement Environments and Reflection Conditions (다양한 측정 환경 및 반사 조건에 대한 시각안전 LIDAR 신호 분석)

  • Han, Mun Hyun;Choi, Gyu Dong;Seo, Hong Seok;Mheen, Bong Ki
    • Korean Journal of Optics and Photonics
    • /
    • v.29 no.5
    • /
    • pp.204-214
    • /
    • 2018
  • Since LIDAR is advantageous for accurate information acquisition and realization of a high-resolution 3D image based on characteristics that can be precisely measured, it is essential to autonomous navigation systems that require acquisition and judgment of accurate peripheral information without user intervention. Recently, as an autonomous navigation system applying LIDAR has been utilized in human living space, it is necessary to solve the eye-safety problem, and to make reliable judgment through accurate obstacle recognition in various environments. In this paper, we construct a single-shot LIDAR system (SSLs) using a 1550-nm eye-safe light source, and report the analysis method and results of LIDAR signals for various measurement environments, reflective materials, and material angles. We analyze the signals of materials with different reflectance in each measurement environment by using a 5% Al reflector and a building wall located at a distance of 25 m, under indoor, daytime, and nighttime conditions. In addition, signal analysis of the angle change of the material is carried out, considering actual obstacles at various angles. This signal analysis has the merit of possibly confirming the correlation between measurement environment, reflection conditions, and LIDAR signal, by using the SNR to determine the reliability of the received information, and the timing jitter, which is an index of the accuracy of the distance information.

Registration of Three-Dimensional Point Clouds Based on Quaternions Using Linear Features (선형을 이용한 쿼터니언 기반의 3차원 점군 데이터 등록)

  • Kim, Eui Myoung;Seo, Hong Deok
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.38 no.3
    • /
    • pp.175-185
    • /
    • 2020
  • Three-dimensional registration is a process of matching data with or without a coordinate system to a reference coordinate system, which is used in various fields such as the absolute orientation of photogrammetry and data combining for producing precise road maps. Three-dimensional registration is divided into a method using points and a method using linear features. In the case of using points, it is difficult to find the same conjugate point when having different spatial resolutions. On the other hand, the use of linear feature has the advantage that the three-dimensional registration is possible by using not only the case where the spatial resolution is different but also the conjugate linear feature that is not the same starting point and ending point in point cloud type data. In this study, we proposed a method to determine the scale and the three-dimensional translation after determining the three-dimensional rotation angle between two data using quaternion to perform three-dimensional registration using linear features. For the verification of the proposed method, three-dimensional registration was performed using the linear features constructed an indoor and the linear features acquired through the terrestrial mobile mapping system in an outdoor environment. The experimental results showed that the mean square root error was 0.001054m and 0.000936m, respectively, when the scale was fixed and if not fixed, using indoor data. The results of the three-dimensional transformation in the 500m section using outdoor data showed that the mean square root error was 0.09412m when the six linear features were used, and the accuracy for producing precision maps was satisfied. In addition, in the experiment where the number of linear features was changed, it was found that nine linear features were sufficient for high-precision 3D transformation through almost no change in the root mean square error even when nine linear features or more linear features were used.