• Title/Summary/Keyword: 3D Imaging

Search Result 1,500, Processing Time 0.027 seconds

2D/3D Convertible Integral Imaging Display Using Point Light Source Array Instrumented by Polarization Selective Scattering Film

  • Song, Byoungsub;Min, Sung-Wook
    • Journal of the Optical Society of Korea
    • /
    • v.17 no.2
    • /
    • pp.162-167
    • /
    • 2013
  • A two-dimensional (2D) / three-dimensional (3D) convertible display system based on integral imaging is proposed to adopt a novel switchable point light source array, which is implemented using the polarization modulator and the polarization selective scattering film that transmits or scatters the incident light due to its polarization direction. The 2D and the 3D display modes of the proposed system can be modulated by controlling the polarization direction of back light using the polarization modulator. We explain the basic principles of the proposed system and verify the feasibility of the system through preliminary experiments.

Holographic Three-dimensional Computer-Aided Imaging

  • Rosen, Joseph;Abookasis, David
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2003.07a
    • /
    • pp.433-436
    • /
    • 2003
  • Recent developments in a new method of holographic computer-aided imaging will be reviewed. Our hologram is computed from angular viewpoints of the observed 3D scene. The recorded data are processed to yield a 2D computer-generated hologram. When this hologram is illuminated properly, a 3D image of the scene is reconstructed.

  • PDF

Laser Illuminated Multi-viewer 3D Displays

  • Sexton, Ian;Bates, Richard;Lee, Wing;Surman, Phil;Hopf, Klaus;Neumann, Frank;Corbett, Alex;Buckley, Edward
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.1423-1426
    • /
    • 2008
  • This paper describes current work regarding two EC funded projects, MUTED and HELIUM3D whose objective is to produce an autostereoscopic display system which is well suited to domestic television applications. Both of these projects have common roots in a previous EC funded project (ATTEST) and both employ laser illumination and viewer head tracking.

  • PDF

Real-World Pointing Region Estimation Using 3D Geometry Information (3차원 기하학 정보를 이용한 실세계 지시 영역 추정)

  • Han, Yun-Sang;Seo, Yung-Ho;Doo, Kyoung-Soo;Choi, Jong-Soo
    • Proceedings of the IEEK Conference
    • /
    • 2007.07a
    • /
    • pp.353-354
    • /
    • 2007
  • This paper proposes the method which estimates the pointing region at the real world. This paper uses the technique to easily calibrate a camera of Z. Zhang. First, we calculate the projection matrix of each camera by the technique. Next, we estimate the location of the shoulder and the fingertip. Then we compute the pointing region in 3D real world by using projection matrix of each camera. Experiment result showed that the error between estimated point and the plane center point is less than 5cm.

  • PDF

Emotional Expression through the Selection Control of Gestures of a 3D Avatar (3D 아바타 동작의 선택 제어를 통한 감정 표현)

  • Lee, JiHye;Jin, YoungHoon;Chai, YoungHo
    • Korean Journal of Computational Design and Engineering
    • /
    • v.19 no.4
    • /
    • pp.443-454
    • /
    • 2014
  • In this paper, an intuitive emotional expression of the 3D avatar is presented. Using the motion selection control of 3D avatar, an easy-to-use communication which is more intuitive than emoticon is possible. 12 pieces different emotions of avatar are classified as positive emotions such as cheers, impressive, joy, welcoming, fun, pleasure and negative emotions of anger, jealousy, wrath, frustration, sadness, loneliness. The combination of lower body motion is used to represent additional emotions of amusing, joyous, surprise, enthusiasm, glad, excite, sulk, discomfort, irritation, embarrassment, anxiety, sorrow. In order to get the realistic human posture, BVH format of motion capture data are used and the synthesis of BVH file data are implemented by applying the proposed emotional expression rules of the 3D avatar.

Multi-tracer Imaging of a Compton Camera (다중 추적자 영상을 위한 컴프턴 카메라)

  • Kim, Soo Mee
    • Progress in Medical Physics
    • /
    • v.26 no.1
    • /
    • pp.18-27
    • /
    • 2015
  • Since a Compton camera has high detection sensitivity due to electronic collimation and a good energy resolution, it is a potential imaging system for nuclear medicine. In this study, we investigated the feasibility of a Compton camera for multi-tracer imaging and proposed a rotating Compton camera to satisfy Orlov's condition for 3D imaging. Two software phantoms of 140 and 511 keV radiation sources were used for Monte-Carlo simulation and then the simulation data were reconstructed by listmode ordered subset expectation maximization to evaluate the capability of multi-tracer imaging in a Compton camera. And the Compton camera rotating around the object was proposed and tested with different rotation angle steps for improving the limited coverage of the fixed conventional Compton camera over the field-of-view in terms of histogram of angles in spherical coordinates. The simulation data showed the separate 140 and 511 keV images from simultaneous multi-tracer detection in both 2D and 3D imaging and the number of valid projection lines on the conical surfaces was inversely proportional to the decrease of rotation angle. Considering computation load and proper number of projection lines on the conical surface, the rotation angle of 30 degree was sufficient for 3D imaging of the Compton camera in terms of 26 min of computation time and 5 million of detected event number and the increased detection time can be solved with multiple Compton camera system. The Compton camera proposed in this study can be effective system for multi-tracer imaging and is a potential system for development of various disease diagnosis and therapy approaches.

Crosstalk evaluation in multiview autostereoscopic three-dimensional displays with an optimized diaphragm applied

  • Peng, Yi-Fan;Li, Hai-Feng;Zheng, Zhen-Rong;Xia, Xin-Xing;Yao, Zhi;Liu, Xu
    • Journal of Information Display
    • /
    • v.13 no.2
    • /
    • pp.83-89
    • /
    • 2012
  • The crosstalk evaluation of multiview autostereoscopic three-dimensional (3D) displays is discussed, with both the human and technical factors investigated via image quality assessment. In the imaging performance measurements and analysis for a multiview autostereoscopic display prototype equipment, it was inferred that crosstalk would have both a positive and a negative effect on the imaging performance of the equipment. The importance of the attached diaphragm in the crosstalk evaluation was proposed and then experimentally verified, using the developed prototype equipment. The luminance distribution and crosstalk situation were given, with two different diaphragm arrays applied. The analysis results showed that the imaging performance of this 3D display system can be improved with minimum changes to the system structure.

3D Microwave Breast Imaging Based on Multistatic Radar Concept System

  • Simonov, Nikolai;Jeon, Soon-Ik;Son, Seong-Ho;Lee, Jong-Moon;Kim, Hyuk-Je
    • Journal of electromagnetic engineering and science
    • /
    • v.12 no.1
    • /
    • pp.107-114
    • /
    • 2012
  • Microwave imaging (MI) is one of the most promising and attractive new techniques for earlier breast cancer detection. Microwave tomography (MT) realizes configuration of a multistatic multiple-input multiple-output system and reconstructs dielectric properties of the breast by solving a nonlinear inversion scattering problem. In this paper, we describe ETRI 3D MT system with 3D MI reconstruction program and demonstrate its robustness through some examples of the image reconstruction.

Computational Technique of Volumetric Object Reconstruction in Integral Imaging by Use of Real and Virtual Image Fields

  • Shin, Dong-Hak;Cho, Myung-Jin;Park, Kyu-Chil;Kim, Eun-Soo
    • ETRI Journal
    • /
    • v.27 no.6
    • /
    • pp.708-712
    • /
    • 2005
  • We propose a computational reconstruction technique in large-depth integral imaging where the elemental images have information of three-dimensional objects through real and virtual image fields. In the proposed technique, we reconstruct full volume information from the elemental images through both real and virtual image fields. Here, we use uniform mappings of elemental images with the size of the lenslet regardless of the distance between the lenslet array and reconstruction image plane. To show the feasibility of the proposed reconstruction technique, we perform preliminary experiments and present experimental results.

  • PDF

Improved Viewing Quality of 3-D Images in Computational Integral Imaging Reconstruction Based on Round Mapping Model

  • Shin, Dong-Hak;Kim, Nam-Woo;Yoo, Hoon;Lee, Joon-Jae;Lee, Byoung-Ho;Kim, Eun-Soo
    • ETRI Journal
    • /
    • v.29 no.5
    • /
    • pp.649-654
    • /
    • 2007
  • In this paper, we propose a computational integral imaging reconstruction (CIIR) method using a round mapping model to improve the viewing quality of 3-D images. The proposed CIIR method can overcome the problem of non-uniformly reconstructed images caused by the conventional method. To show the usefulness of proposed method, some experiments are carried out and the results are presented.

  • PDF