References
- M. Garcia, A. Jemal, E. M. Ward, M. M. Center, Y. Hao, R. L. Siegel, and M. J. Thun, Global Cancer Facts and Figures, Atlanta, GA: American Cancer Society, 2007.
- P. M. Meaney, K. D. Paulsen, B. W. Pogue, and M. I. Miga, "Microwave image reconstruction utilizing log-magnitude and unwrapped phase to improve high-contrast object recovery," IEEE Trans. Medical Imaging, vol. 20, no. 2, pp. 104-116, Feb. 2001. https://doi.org/10.1109/42.913177
- Q. Fang, Computational Methods for Microwave Medical Imaging, Ph.D. Thesis, Dartmouth College, Hanover, Dec. 2004.
- I. Hieda, K. C. Nam, "2D image construction from low resolution response of a new non-invasive measurement for medical application," ETRI J., vol. 27, no. 4, pp. 385-393, 2005. https://doi.org/10.4218/etrij.05.0104.0013
- S. Y. Semenov, A. E. Bulyshev, A. Abubakar, V. G. Posukh, Y. E. Sizov, A. E. Souvorov, P. Van den Berg, and T. Williams, "Microwave tomographic imaging of the high dielectric-contrast objects using different image reconstruction approaches," IEEE Trans. Microw. Theory Tech., vol. 53, no. 7, pp. 2284-2294, 2005. https://doi.org/10.1109/TMTT.2005.850459
- Q. Fang, P. M. Meaney, and K. D. Paulsen, "Microwave image reconstruction of tissue property dispersion characteristics utilizing multiple-frequency information," IEEE Trans. Microw. Theory Tech., vol. 52, no. 8, pp. 1866-1875, Aug. 2004. https://doi.org/10.1109/TMTT.2004.832014
- E. J. Bond, Xu Li, S. C. Hagness, and B. D. Van Veen, "Microwave imaging via space-time beamforming for early detection of breast cancer," IEEE Trans. Antennas Propag., vol. 51, no. 8, pp. 1690-1705, Aug. 2003. https://doi.org/10.1109/TAP.2003.815446
- J. M. Sill, E. C. Fear, "Tissue sensing adaptive radar for breast cancer detection-experimental investigation of simple tumor models," IEEE Trans. Microw. Theory Tech., vol. 53, no. 11, pp. 3312-3319, Nov. 2005. https://doi.org/10.1109/TMTT.2005.857330
- Yao Xie, S. K. Davis, M. Lazebnik, F. Kelcz, B. D. Van Veen, and S. C. Hagness, "Multistatic adaptive microwave imaging for early breast cancer detection," IEEE Trans. Biomed. Eng., vol. 53, no. 8, pp. 1647-1657, Aug. 2006. https://doi.org/10.1109/TBME.2006.878058
- E. Zastrow, S. K. Davis, M. Lazebnik, F. Kelcz, B. D. Van Veen, and S. C. Hagness, "Development of anatomically realistic numerical breast phantoms with accurate dielectric properties for modeling microwave interactions with the human breast," IEEE Trans. Biomed. Eng., vol. 55, no. 12, pp. 2792-2800, Dec. 2008. https://doi.org/10.1109/TBME.2008.2002130
- D. W. Winters, J. D. Shea, P. Kosmas, B. D. Van Veen, and S. C. Hagness, "Three-dimensional microwave breast imaging: Dispersive dielectric properties estimation using patient-specific basis functions," IEEE Trans. Med. Eng., vol. 28, no. 7, pp. 969-981, Jul. 2009. https://doi.org/10.1109/TMI.2008.2008959
- J. D. Shea, P. Kosmas, S. C. Hagness, and B. D. Van Veen, "Three-dimensional microwave imaging of realistic numerical breast phantoms via a multiple- frequency inverse scattering technique," Medical Physics, vol. 37, no. 8, pp. 4210-4226, Aug. 2010. https://doi.org/10.1118/1.3443569
- T. Rubæk, P. M. Meaney, P. Meincke, and K. D. Paulsen, "Nonlinear microwave imaging for breastcancer screening using gauss-newton's method and the CGLS inversion algorithm," IEEE IEEE Trans. Antennas Propag., vol. 55, no. 8, pp. 2320-2331, Aug. 2007. https://doi.org/10.1109/TAP.2007.901993
- P. M. Meaney, M. W. Fanning, T. Raynolds, C. J. Fox, Q. Fang, Ch. A. Kogel, S. P. Poplack, and K. D. Paulsen, "Initial clinical experience with microwave breast imaging in women with normal mammography," Academic Radiology, vol. 14, no. 2, pp. 207-218, Feb. 2007. https://doi.org/10.1016/j.acra.2006.10.016
- Q. Fang, P. M. Meaney, and K. D. Paulsen, "Viable three-dimensional medical microwave tomography: Theory and numerical experiments," IEEE Trans. Antennas Propag., vol. 58, no. 2, pp. 449-458, Feb. 2010. https://doi.org/10.1109/TAP.2009.2037691
- Williams, B. Nair, A. Pavlovsky, V. Posukh, and M. Quinn, "Microwave tomography of extremities: 1. Dedicated 2D system and physiological signatures," Phys. Med. Biol. vol. 56, pp. 2005-2017, 2011. https://doi.org/10.1088/0031-9155/56/7/006
- S. Semenov, J. Kellam, Y. Sizov, A. Nazarov, Th. Williams, B. Nair, A. Pavlovsky, V. Posukh, and M. Quinn, "Microwave tomography of extremities: 2. Functional fused imaging of flow reduction and simulated compartment syndrome," Phys. Med. Biol. vol. 56, pp. 2019-2030, 2011. https://doi.org/10.1088/0031-9155/56/7/007
- M. Klemm, J. A. Leendertz, D. Gibbins, I. J. Craddock, A. Preece, and R. Benjamin, "Microwave radar- based differential breast cancer imaging: imaging in homogeneous breast phantoms and low contrast scenarios," IEEE Trans. Antennas Propag., vol. 58, no. 7, pp. 2237-2344, Jul. 2010.
- Y. Chen, I. J. Craddock, P. Kosmas, M. Ghavami, and P. Rapajic, "Multiple-input multiple-output radar for lesion classification in ultrawideband breast imaging," IEEE Journ. of Select. Top. in Sign. Proc., vol. 4, no. 1, pp. 187-201, Feb. 2010. https://doi.org/10.1109/JSTSP.2009.2038975
- T. Henriksson, M. Klemm, D. Gibbins, J. Leendertz, T. Horseman, A. W. Preece, R. Benjamin, and I. J. Craddock, "Clinical trials of a multistatic UWB radar for breast imaging," Antennas Propag. Conf. (LAPC), Loughborough, pp. 1-4 , Nov. 2011.
- C. Gilmore, P. Mojabi, A. Zakaria, M. Ostadrahimi, C. Kaye, S. Noghanian, L. Shafai, S. Pistorius, and J. LoVetri, "A wideband microwave tomography system with a novel frequency selection procedure," IEEE Trans. Biomed. Eng., vol. 57, no. 4, pp. 894-904, Apr. 2010. https://doi.org/10.1109/TBME.2009.2036372
- C. Gilmore, P. Mojabi, A. Zakaria, S. Pistorius, and J. LoVetri, "On super-resolution with an experimental microwave tomography system," IEEE Antennas Wireless Lett., vol. 9, pp. 393-396, Apr. 2010. https://doi.org/10.1109/LAWP.2010.2049471
- M. Ostadrahimi, P. Mojabi, S. Noghanian, L. Shafai, S. Pistorius, and Joe LoVetri, "A novel microwave tomography system based on the scattering probe technique," IEEE Trans. Instrum. Meas., vol. 61, no. 2, pp. 894-904, Feb. 2012.
- A. Fhager, M. Gustaffson, and S. Nordebo, "Image reconstruction in microwave tomography using a dielectric debye model," IEEE Trans. Biomed. Eng., vol. 59, no. 1, pp. 156-166, Jun. 2012. https://doi.org/10.1109/TBME.2011.2168606
- R. Halter, A. Hartov, and K. Paulsen, "A broadband high-frequency electrical impedance tomography system for breast imaging," IEEE Trans. Biomed. Eng., vol. 55, no. 2, pp. 650-659, Feb. 2008. https://doi.org/10.1109/TBME.2007.903516
- T. J. Cui, W. C. Chew, X. X. Yin, and W. Hong, "Study of resolution and super resolution in electromagnetic imaging for half-space problems," IEEE Trans. Antennas Propag., vol. 52, no. 6, pp. 1398-1411, Jun. 2004. https://doi.org/10.1109/TAP.2004.829847
- F. Chen, W. Chew, "Experimental verification of super resolution in nonlinear inverse scattering," Appl. Phys. Lett., vol. 72, no. 23, pp. 3080-3082, 1998. https://doi.org/10.1063/1.121547
- S. Semenov, R. Svenson, A. Bulyshev, A. Souvorov, A. Nazarov, Y. Sizov, V. Posukh, A. Pavlovsky, P. Repin, and G. Tatsis, "Spatial resolution of microwave tomography for detection of myocardial ischemia and infarction-experimental study on twodimensional models," IEEE Trans. Microw. Theory Tech., vol. 48, no. 4, pp. 538-544, Apr. 2000. https://doi.org/10.1109/22.842025
- S. H. Son, N. Simonov, H. J. Kim, J. M. Lee, and S. I. Jeon, "Preclinical prototype development of a microwave tomography system for breast cancer detection," ETRI Journal, vol. 32, no. 6, pp. 901- 910, Dec. 2010. https://doi.org/10.4218/etrij.10.0109.0626
Cited by
- Design and preliminary experiments of a precision microwave tomography system vol.57, pp.10, 2015, https://doi.org/10.1002/mop.29347
- THREE-DIMENSIONAL FAR-FIELD HOLOGRAPHIC MICROWAVE IMAGING: AN EXPERIMENTAL INVESTIGATION OF DIELECTRIC OBJECT vol.61, 2014, https://doi.org/10.2528/PIERB14101502
- Experimental Measurement System for 3-6 GHz Microwave Breast Tomography vol.15, pp.4, 2015, https://doi.org/10.5515/JKIEES.2015.15.4.250
- Recent Advances in Microwave Imaging for Breast Cancer Detection vol.2016, 2016, https://doi.org/10.1155/2016/5054912
- Analysis of Microwave-Induced Thermoacoustic Signal Generation Using Computer Simulation vol.16, pp.1, 2016, https://doi.org/10.5515/JKIEES.2016.16.1.1
- Skin artifact removal technique for breast cancer radar detection vol.51, pp.6, 2016, https://doi.org/10.1002/2016RS006011
- Temperature influence of matching liquid in a microwave tomography platform system vol.56, pp.12, 2014, https://doi.org/10.1002/mop.28748
- Investigation of Phase Singularity Problem in Microwave Breast Tomography vol.14, pp.4, 2014, https://doi.org/10.5515/JKIEES.2014.14.4.332
- Sensing probe for 3–6 GHz microwave imaging systems vol.50, pp.15, 2014, https://doi.org/10.1049/el.2014.1923
- Advanced Fast 3-D Electromagnetic Solver for Microwave Tomography Imaging vol.36, pp.10, 2017, https://doi.org/10.1109/TMI.2017.2712800
- Analysis of the Super-Resolution Effect on Microwave Tomography vol.53, pp.12, 2018, https://doi.org/10.1029/2017RS006404