최근 영유아 성장기에 발생하는 고관절 이형성증(Developmental Dysplasia of Hip, DDH)의 숫자가 늘어나고 있다. DDH는 영유아 성장을 방해하고 다른 부작용도 많이 발생시키기 때문에 최대한 조기에 발견하여 치료해야 한다. 최근 들어 Convolutional Neural Networks (CNN) 및 개선된 Resnet50을 활용한 머신러닝 기법이 초음파 영상 분석에 많이 활용되고 있다. 연구 결과를 보면 컴퓨터 보조 이미지 분석이 의료현장에서 객관성과 생산성을 크게 향상시키고 있다. 본 연구의 결과는 정형외과에서의 난제인 초음파 영상을 통한 DDH 컴퓨터 보조 진단 알고리즘에도 충분히 활용될 수 있다는 것을 보여주고 있다. 본 논문에서는 CNN을 활용하여 DDH를 자동으로 측정하고 진단할 수 있는 컴퓨터 보조 진단 알고리즘을 제안하였다. DDH 측정을 위해 유아 고관절의 정상/비정상 판독을 위해 Acetabulum-Femoral head의 angle을 자동으로 계산하였으며 기존 영상을 딥 러닝하여 진단을 자동으로 하는 알고리즘을 설계하였다. 실험 결과 의사와 비교하여 진단의 속도와 정확도가 향상된다는 것을 확인하였다.
다중영상화기술은 진단 및 치료 반응평가의 성능향상을 위하여 활발히 연구되고 있으며 하드웨어의 통합에도 불구하고 기기간의 획득방법의 차이에 따라 영상간의 불일치와 계수부족으로 인하여 정합도를 떨어뜨린다. 이에 본 연구에서는 소동물 PET 리스트모드 데이터의 저장형식을 분석하고 잡음 및 통계적 특성을 향상시키기 위하여 이벤트 데이터를 재추출하여 정량적으로 개선된 PET 영상을 획득하고자 하였다. 소동물 리스트모드 Inveon PET 데이터는 소동물에 37 MBq/0.1 ml를 꼬리정맥에 주사하고 60분 후 10분 동안 정적데이터를 획득하였다. 생체신호와 같이 획득된 리스트모드 데이터형식은 48 비트의 패킷크기로 이루어져 있으며 패킷 내에서는 8 비트의 헤더와 40 비트의 payload 영역으로 나누어져 있다. 사이노그램 생성은 그레이코드로 각 패킷의 순서와 흐름을 평가하고 각 패킷의 순서를 CPU에서 검출기위치 변환과 단순 증가 그리고 비모수 부트스트랩 기법을 이용하여 재추출하여 새로운 사이노그램을 생성하였다. 영상은 3 span과 31 ring difference로 설정하여 생성된 사이노그램은 산란 및 감쇠보정을 고려하지 않고 16부분 집합으로 4회 반복하는 OSEM 2D 알고리즘을 이용하여 재구성하였다. 획득된 PET 데이터의 헤더정보에서의 동시계수의 총수는 1,394만 계수였으며, 리스트-이벤트 데이터의 패킷을 분석한 동시계수의 총수는 1,293만 계수였다. PET 데이터의 단순 증가는 최대값이 1.336에서 1.743으로 향상되었으나 잡음이 같이 증가됨을 확인하였다. PET 데이터 재추출 성능은 순차적인 패킷의 payload 값을 시프트연산을 통해 데이터의 위치를 이동시킴으로써 특정 잡음이 제거되거나 대조도가 향상되는 영상을 획득할 수 있었다. 부트스트랩 재추출 기법은 영상의 잡음과 통계적 특성이 개선된 PET 영상을 제공하여 다중영상화시 정합도를 향상시켜 질환의 조기 진단 성능을 향상시킬 수 있을 것으로 기대된다.
골절 치료에서 최소 침습 수술 방법은 그 효용성이 입증 되었지만, 의료진이 골편을 직접 볼 수 없기 때문에 방사선 투시영상장치(C-armed fluoroscopy)에 의존하여 수술을 진행하게 된다. 최소침습 수술은 환자에게는 감염이 적고 회복이 빠르다는 장점이 있지만 의료진에게는 과도한 방사선 피폭과 부정확한 골절정복 가능성이 높아지는 문제점이 발생할 수 있다. 본 연구에서는 이와 같은 문제를 해결하기 위해 수술 항법장치와 수술 지원로봇을 활용하는 방법을 제안한다. 골편의 3D CT 모델을 실제 골편과 특징점을 이용해서 정합하는 오픈 소스 기반으로 구성된 수술 항법 장치와 2D 투시 영상에서 골편간의 회전 변위를 정상측 투시 영상과 비교하여 확인 할 수 있는 방법을 제안하였고, 모델 뼈를 이용한 실험으로 제안한 방법의 임상적 타당성을 확인하였다. 그 결과 3D CT-기반 수술 항법 장치의 모델 뼈와 영상정합 정확도는 약 2mm 로 정형외과 수술에서 요구되는 사양을 만족했으며, 2D 투시 영상에서는 ${\pm}15^{\circ}$범위의 골편간의 회전에서 $2.5^{\circ}$이하의 변별력을 나타내었다.
목 적: 온보드 영상장치(OBI) 및 콘빔 CT (CBCT)를 이용하면 치료실에 위치한 환자의 자세 및 위치와 모의치료(SIMULATION) 시점의 환자의 자세 및 위치를 비교할 수 있다. Detected offsets은 실제로 적용된 인체팬톰(Rando phantom) 위치의 오차와 비교되어 진다. 이후, 인체 팬톰은 detected 오차에 근거하여 couch를 움직여 위치선정 되었다. 또한 인체팬톰 위치 결정의 실측값과 이론값 오차값들을 비교하였으며, OBI를 사용하고 있는 KV X선영상의 2D와 CBCT의 3D 타켓 위치 정확성 평가하고자 한다. 대상 및 방법: 신체 내부 구조가 모사된 팬톰(The Rando Phantom, Alderson Resarch Laboratories Inc. Stamford. CT, USA)을 사용하여 실제방사선 치료와 동일한 과정을 따라 모의치료(SIMULATION) 및 치료계획(RTP)을 시행한 후 치료 데이블 위에 인체 팬톰을 셋업한다. 정확히 위치가 재현된다고 가정되는 인체팬톰에 대해 3가지 방법으로 실험을 했는데 X, Y, Z축의 변화에 따라 셋업 오차를 측정했고 각각의 실험은 10회씩 반복되어 오차의 표준 편차를 구했다. DigiPas DWL-80G는 기울기의 각을 결정하기 위해 사용하였으며, 2D/2D 및 3D/3D정합의 실측치와 측정치를 비교 분석 하였다. 결 과: 온보드 영상장치로 획득한 정면 및 측면 kv x선 영상과 모의치료시 디지털 재구성 기준영상과의 2차원/2차원 정합시, 팬톰의 X, Y, Z 편차 평균값은 lat 0.12 cm, long -0.66 cm, vert 0.07 cm이며, 각도의 변화를 주었을 때 편차의 평균값은 lat -0.5 cm, long -0.3 cm, 팬톰의 몸을 약간 튼 상태에서의 편차 평균값은 각각 lat -0.5 cm, long 0.2 cm, vert -0.6 cm으로 나타났다. 또한 콘빔CT로 획득한 영상과 모의치료 시 획득한 CT영상을 비교하는 3차원/3차원 정합에서 팬톰의 3가지 방법에서 편차의 평균 detection error와 표준편차는 lateral $0.5{\pm}0.4\;mm$, longitudinal $0.8{\pm}0.5\;mm$, vertical $0.4{\pm}0.3\;mm$로 각각 0-10 mm의 범위이다. Residual error에 해당되는 positioning couch shift 변수는 $0.6{\pm}0.3\;mm$, $0.5{\pm}0.3\;mm$, $0.3{\pm}0.1\;mm$이다. 20-50 mm까지 longitudinal shift에 의한 평균 detection error는 각각 lateral $0.4{\pm}0.2\;mm$, longitudinal $0.3{\pm}0.2\;mm$, vertical $0.3{\pm}0.3\;mm$이다. Residual error는 $0.6{\pm}0.3\;mm$, $0.6{\pm}0.2\;mm$, $0.4{\pm}0.1\;mm$이다. Detection error는 모두 0.0~0.6 mm 범위이다. Residual error는 0.3~0.9 mm 범위로 나타났다. 결 론: 온보드 영상장치(OBI) 및 콘빔 CT (CBCT)를 이용하여 표적위치의 정확성을 평가하였다. 치료실에 위치한 환자의 자세 및 위치와 모의치료(SIMULATION) 시점의 환자의 자세 및 위치를 비교할 수 있다. 그러므로 OBI 및 CBCT를 이용한 2D/2D 및 3D/3D 정합은 모의 치료 시와 환자 치료 시 정확한 정합을 함으로써 error를 최소화 할 것으로 평가된다.
목 적: 본 연구의 목적은 전립선암 환자의 방사선 치료 시 표적의 정확한 위치를 찾기 위해 표지(marker)를 삽입한 경우 방사선치료계획 시 촬영한 CT 영상과 매 치료 시 온보드 영상장치(on-board imager, OBI)로부터 획득된 직교 kV X선 영상을 이용하여 표지의 위치를 계산하고 자동으로 맞춤을 수행하여 환자 셋업 오차를 보정하도록 하는 방법을 개발하는 것이다. 대상 및 방법: 세 개의 금 표지를 환자 전립선의 기준 위치에 삽입한 후 CT 모의치료기를 이용하여 2 mm 슬라이스 간격으로 CT 영상을 획득하였으며 매 치료 전에 환자 셋업 보정을 위하여 OBI를 이용하여 직교하는 kV X선 환자 영상을 획득하였다. CT 및 kV X선 영상 내 표지 정보 및 좌표 값 추출을 위하여 화소값의 문턱값 처리, 필터링, 외곽선 추출, 패턴 인식 등 다수의 영상처리 알고리듬을 적용하였다. 각 표지들 위치의 대표값으로 삼각형의 무게중심 개념을 이용하였으며 기준 CT 영상 및 직교 kV X선 영상으로부터 각각 무게중심의 좌표를 구한 후 그 차이를 보정해야 할 셋업의 오차로 계산하였다. 알고리듬의 건전성(robustness) 평가를 위해 팬텀을 이용하여 계산된 CT 및 kV X선 영상의 무게중심이 실제 지정된 위치와 일치하는지 여부를 확인하였으며, 본원에서 방사선 치료를 시행한 네 명의 전립선암 환자에 대상으로 치료 직전 촬영한 38 내지 39쌍의 kV X선 영상에 대하여 알고리듬을 적용한 후 OBI 프로그램에서 제공되는 2차원-2차원 맞춤 결과와 비교하였다. 결 과: 팬텀 실험 결과 실제 값과 CT 영상 및 직교 kV X선 영상으로부터 계산된 무게 중심 좌표 값이 1 mm 오차 내에서 일치함을 확인할 수 있었다. 환자 영상에 적용한 경우에도 모든 영상에 대하여 성공적으로 각 표지의 위치를 계산할 수 있었으며 2차원-2차원 맞춤 기능을 이용하여 계산된 셋업 오차와 비교해본 결과 1 mm 범위 내에서 일치함을 확인할 수 있었다. 본 알고리듬을 이용하여 계산한 결과 셋업 오차는 전후(AP) 방향으로 환자별로 작게는 $0.1{\pm}2.7\;mm$에서 크게는 $1.8{\pm}6.6\;mm$까지, 상하(SI) 방향으로 $0.8{\pm}1.6\;mm$에서 $2.0{\pm}2.7\;mm$, 좌우(Lat) 방향으로 $-0.9{\pm}1.5\;mm$에서 $2.8{\pm}3.0\;mm$까지였으며 환자에 따라 그 편차의 차이가 있었다. 결 론: 제안된 알고리듬을 이용하여 1회 셋업 오차를 평가하는 데 소요되는 시간은 10초 미만으로서 임상 적용 시 환자 셋업 시간을 줄이고 주관성을 배제하는 데 도움이 될 수 있을 것으로 기대된다. 그러나 온라인 환자 셋업 보정 시스템에 적용하기 위해서는 선형가속기의 제어 시스템에 통합되는 것이 필요하다.
Jung Hyun, Kim;Jong-Min, Lee;Uicheul, Yoon;Hyun-Pil, Kim;Bang Bon, Koo;In Young, Kim;Dong Soo, Lee;Jun Soo, Kwon;Sun I., Kim
대한의용생체공학회:의공학회지
/
제25권5호
/
pp.323-328
/
2004
대뇌조직 구분을 위한 실험적인 정보를 제공하기 위한 뇌조직 확률 지도를 개발하는 경우 개인마다 구조적으로 다양한 형태를 가진 뇌의 특성과 특히 인종간의 두드러진 차이론 반드시 고려해야 한다 본 연구에서는 특정 그룹에 대한 뇌조직 확률 지도를 제작하는데 필요한 절차를 알아보고 나이에 따른 그룹간의 뇌조직 확률 지도의 구조적인 차이를 살펴보고자 한다 피험자 그룹은 100명의 건강한 한국인이며 나이에 따라 두 그룹으로 분류하였다. 뇌 확률 지도의 기준 좌표계를 설정하기 위해 전체 그룹 내의 모든 피험자의 뇌 영상에 대한 평균 영상을 구하고, 각 뇌 영상을 기준 좌표계로 정규화 시킨다. 정규화 과정에서 얻어진 변환 매개 변수를 미리 각 뇌조직(회질, 백질, 뇌척수액)으로 분할된 피험자의 영상에 적용하고 각 그룹 내에서 변환된 뇌 조직 영상을 평균함으로써 뇌 조직 확률 지도를 완성하였다. 나이에 따른 구조적인 차이를 살펴보기 위해 그룹간 확률 값의 차이 영상을 구하였다. 이전 연구결과에서와 마찬가지로 나이가 증가함에 따라 뇌실이 확대되고 회질의 위축이 전체적인 뇌 영역에서 일어났다. 그러므로 우리는 대뇌 조직 분할을 위해 설험적인 정보들을 사용하고자 할 때는 특정 그룹에 대한 뇌 확률 지도를 사용할 것을 제안한다.
고해상도 위성의 센서모형화는 도면화와 지형공간정보(Geo-spatial Information System)의 응용을 위해서는 필수적인 단계이다. 영상과 대상물과의 기하학적인 관계를 규정하는 센서모형은 크게 엄밀(rigorous)센서모형화와 간략(approximate)센서모형화의 두 가지로 나눌 수 있다. 엄밀센서모형화는 위성의 실제적인 촬영기하를 고려한 것으로 센서의 내외부적인 특성을 알고 있어야 하는 반면에 간략센서모형화 방법은 영상취득기하의 종합적인 이해나 센서의 내외부적인 특성정보를 필요로 하지 않기 때문에 사진측량 커뮤니티에서 많은 관심이 증대되고 있다. 본 연구에서는 고해상도 위성영상의 3차원 위치결정에 이용되고 있는 엄밀센서모형과 다양한 간략센서모형에 대해 비교연구를 수행하였으며 위성영상의 이용목적에 따른 적합한 모형화 방법을 제안하였다. IKONOS 위성영상을 이용한 사례연구를 통하여 엄밀센서모형과 간략센서모형에 대한 비교연구를 수행하였으며, 수집 가능한 지상기준점에 따른 위치정확도를 평가하였다. 간략센서모형화 방법 중에서 편의보정된 다항식비례모형(bias compensated RFM)이 가장 우수하였으며 개량평행투영모형(modified parallel projection)과 평행-중심투영모형(parallel-perspective model)은 적은 수의 기준점을 이용하여 센서모형화가 가능하였다. 또한 간략센서모형화 방법 중 부등각사상변환(affine transformation)은 고해상도 위성의 수평위치결정과 영상간의 등록에 활용가능하다.
PET/CT 검사에서 환자의 움직임이나 높은 비방사능에 의해 냉소 인공물(washed-out artifact)이 발생하여 육안적 판독 및 정량평가의 정확성을 감소시킬 가능성이 있다. GE PET/CT 장비의 산란 제한 보정 알고리즘은 영상에 발생한 냉소 인공물을 제거하여 영상을 회복시켜주는 알고리즘이다. 본 연구의 목적은 팬텀 실험을 통해 높은 비방사능에 의해 냉소 인공물이 발생한 영상에 산란 제한 보정 알고리즘을 적용하였을 때 기존의 정량 값으로 회복 가능한 비방사능의 역치 값을 측정하고, 냉소 인공물이 발생한 임상 환자 영상에 산란 제한 보정 알고리즘을 적용하여 보정 전과 후의 영상을 비교 분석하고자 한다. $^{68}Ge$ 실린더 팬텀 영상에 냉소 인공물을 발생시키기 위해 임의의 $^{18}F$ 선원의 비방사능이 20 ~ 20,000 kBq/ml 가 되도록 20 단계로 분주하고 $^{18}F$ 선원의 CT 영상과 PET 영상간에 불일치(mis-registration) 정도가 없을 때, 불일치가 각각 1, 2, 3, 4 cm 일 때의 영상을 획득하였다. 또한 본원에서 $^{18}F-FDG$ Fusion Whole Body PET/CT 검사를 시행한 환자 중 유치 도뇨관 내에 높은 비방사능에 의해 냉소 인공물이 발생한 34명의 환자를 대상으로, CT 영상과 PET 영상간의 불일치 정도(cm), 인공물을 발생시키는 원인이 되는 비방사능의 수치(kBq/ml), 인공물이 발생한 단면 내 근육에서의 $SUV_{mean}$, 인공물이 발생한 단면 내 병변에서의 $SUV_{max}$, 인공물이 발생하지 않은 단면 내 병변에서의 $SUV_{max}$를 측정하였다. 통계는 보정 전과 후의 차이를 비교하기 위해 대응 표본 t 검정을 시행하였다. 팬텀 실험에서는 $^{18}F$ 선원의 비방사능이 커질수록 $^{68}Ge$ 실린더 팬텀의 $SUV_{mean}$가 감소하였다. 불일치 거리가 커질수록 $SUV_{mean}$가 급격히 저하 되었지만 반대로 보정 효과는 더 크게 나타났다. 비방사능 50 kBq/ml 이하에서는 모든 조건에서 육안적으로도 냉소 인공물이 발생하지 않았으며 $SUV_{mean}$에도 차이가 없었다. 불일치가 없을 때와 1 cm 차이가 있을 때는 120 kBq/ml 이하부터 산란 제한 보정 알고리즘을 적용 할 때 기존 $SUV_{mean}$(0.95)와 동일하게 회복 되었고, 2 cm와 3 cm 차이에서는 100 kBq/ml 이하부터, 4 cm 차이에서는 80 kBq/ml 이하부터 기존 $SUV_{mean}$와 동일하게 회복 되었다. 임상 환자 34명의 영상을 분석한 결과, 불일치 평균 거리는 2.02 cm 이었고, 냉소 인공물을 발생시키는 평균 비방사능은 490.15 kBq/ml 이었다. 인공물이 발생한 단면 내 근육의 $SUV_{mean}$와 병변의 $SUV_{max}$는 보정 전 후 각각 통계적으로 유의한 차이가 있었지만(t=-13.805, p=0.000) (t=-2.851, p=0.012), 인공물이 발생하지 않은 단면 내 병변의 $SUV_{max}$는 통계적으로 유의한 차이가 없었다(t=-1.173, p=0.250). GE PET/CT 장비의 산란 제한 보정 알고리즘은 임상 검사에서 환자의 심한 움직임뿐만 아니라 높은 비방사능의 미세한 움직임에 의해 발생한 냉소 인공물을 제거하여 영상을 회복해 주는 알고리즘이다. 냉소 인공물이 발생 하였을 때 산란제한 보정 알고리즘 적용 후 그 원인이 되는 비방사능의 수치, CT 영상과 PET 영상의 불일치 거리 등을 감안하여 영상을 분석한다면 냉소 인공물 부위의 재촬영 없이, 육안적 판독 및 정량 값을 더 정확하게 평가 하는데 도움이 될 것으로 사료 된다.
목적: 수용체 결합능 정량화를 위해서는 방사성추적자의 동태를 충분히 관찰하기 위해서 보통 뇌 PET 영상을 60-120분 정도 얻어야 한다. 이처럼 장기간 PET 영상을 얻게 되는 경우 보통 피험자의 수의적/불수의적 움직임을 피할 수 없고 이러한 피험자의 머리 움직임은 재구성된 PET 영상의 공간해상도를 저하시키고 측정된 방사능 농도의 정확성을 떨어뜨리는 요인이 된다. 이 연구에서는 동적 영상 정보만을 이용하여 피험자의 머리 움직임을 보정할 수 있는 방법을 개발하고 이를 피험자의 움직임이 불가항력적인 뇌활성화 도파민 D2 수용체 영상에 적용하여 움직임 보정이 리간드 결합능 및 외부 자극에 의한 도파민 유리(release) 정량화에 미치는 영향을 평가하였다. 대상 및 방법: 4명의 정상인 자원자에서 비디오 게임에 의한 도파민 유리를 평가하기 위한 실험으로 순간+연속 주입법을 이용하여 얻은 $[^{11}C]raclopride$ PET 영상을 이용하였으며 실제로 도파민 유리를 계산하기 위해서 필요한 프레임들만을 선별해서 영상 정합 기법을 적용하였다. 즉, $[^{11}C]raclopride$을 투여한 후 선조체에서의 리간드의 특이적 결합이 항정상태(steady state)에 최초로 도달하는 과제 수행 전 (30-50 분) 영역과, 비디오 게임 과제에 의해 도파민이 유리된 후 다시 항정상태에 도달하는 70-90분, 비디오 게임을 멈춘 후 다시 항정상태에 도달하는 110-120 분 데이터에만 움직임 보정 기법을 적용하는 방식이다. 각 항정상태 구간은 보통 2-4개의 프레임으로 구성되므로 먼저 이들 프레임들간의 영상정합을 수행(intra-condition registration)하여 평균 영상을 만들고 이들 평균 영상들을 정합하여 최종적으로 움직임 보정(inter-condition registration)을 하였다. 게임 수행 전후의 도파민유리를 평가하기 위하여 머리 움직임 보정 전후의 게임 과제 수행 전후의 결합능 백분율 변화를 구하였으며 각 조건에 대한 결합능 파라미터 영상을 구하고 움직임 보정 전후의 결합능 영상의 화소별 차이를 SPM2를 이용한 t-test(쌍체 검정)로 알아보았다. 결과: 움직임 보정 전후의 영상을 비교하였을 때, 움직임 보정 전 영상에서, 게임 수행시 영상이 게임을 위한 스크린 위치에 따른 시야 변동으로 게임 수행전 영상에 비하여 앞쪽 아래로 기울어져 있음을 알 수 있었으며 이러한 경향은 대상 피험자 모두에서 관찰되었다. 보정 전 영상으로부터 측정된 비디오 게임에 의한 도파민 유리는 putamen에서 29%, caudate head에서 57%, ventral striatum에서 17% 였으나, 보정 후 영상으로부터 구한 도파민 유리는 이들 영역에서 각각 3.9%, 14,1%, 0.6%로 움직임 보정을 하지 않은 경우 선조체 모든 구소물에서 결합능 감소, 즉 게임에 의한 도파민 유리가 과대평가됨을 알 수 있다. SPM 분석결과에서도 움직임을 보정하지 않은 영상을 이용한 경우, 선조체 구조물에서의 결합능 감소와 움직임에 의한 영상강도 저하가 복합적으로 영향을 주어 결합능 차이가 매우 유의하게 평가되었으나 움직임 보정 후 영상을 이용하여 비교한 경우, 결합능 변화가 선조체 영역에서 국한되어 나타나며 그 유의성이 움직임 보정 전에 비하여 낮음을 알 수 있었다. 결론: 뇌활성화 과제 수행시에 동반되는 피험자의 머리 움직임에 의하여 도파민 유리가 과대평가되었으며 이는 이 연구에서 제안한 영상정합을 이용한 움직임 보정기법에 의해서 개선되었다.
Kim, Dae Gun;Jung, James J;Cho, Kwang Hwan;Ryu, Mi Ryeong;Moon, Seong Kwon;Bae, Sun Hyun;Ahn, Jae Ouk;Jung, Jae Hong
한국의학물리학회지:의학물리
/
제27권4호
/
pp.250-257
/
2016
The purpose of this study was to compare the patient setup errors of two different immobilization devices (Feet Fix: FF and Leg Fix: LF) for pelvic region radiotherapy in Tomotherapy. Thirty six-patients previously treated with IMRT technique were selected, and divided into two groups based on applied immobilization devices (FF versus LF). We performed a retrospective clinical analysis including the mean, systematic, random variation, 3D-error, and calculated the planning target volume (PTV) margin. In addition, a rotational error (angles, $^{\circ}$) for each patient was analyzed using the automatic image registration. The 3D-errors for the FF and the LF groups were 3.70 mm and 4.26 mm, respectively; the LF group value was 15.1% higher than in the FF group. The treatment margin in the ML, SI, and AP directions were 5.23 mm (6.08 mm), 4.64 mm (6.29 mm), 5.83 mm (8.69 mm) in the FF group (and the LF group), respectively, that the FF group was lower than in the LF group. The percentage in treatment fractions for the FF group (ant the LF group) in greater than 5 mm at ML, SI, and AP direction was 1.7% (3.6%), 3.3% (10.7%), and 5.0% (16.1%), respectively. Two different immobilization devices were affected the patient setup errors due to different fixed location in low extremity. The radiotherapy for the pelvic region by Tomotherapy should be considering variation for the rotational angles including Yaw and Pitch direction that incorrect setup error during the treatment. In addition the choice of an appropriate immobilization device is important because an unalterable rotation angle affects the setup error.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.