• Title/Summary/Keyword: 3D Image

Search Result 5,091, Processing Time 0.039 seconds

Method of Display and Processing of Binocular Stereoscopic Image for 3D Endoscopy (3차원 내시경술을 위한 양안 입체 영상처리 및 디스플레이 방법)

  • 송철규
    • Journal of Biomedical Engineering Research
    • /
    • v.19 no.5
    • /
    • pp.531-538
    • /
    • 1998
  • This paper represents the design of 3D endoscopic image processing system in order to Improve visualization and enhance the ability of the surgeon to perform delicate endoscopic surgery. The proposed 3D systems have four features of stereo endoscopic image processing The multiplexer give field seauential stereo for recording and for aligning cameras and viewing stereo with 3D monitor. Demultiplexing of the field sequential image which separates out the R and L images for dual TFT-LCD 3D monitor viewed with passive polarized glasses. separable processing of the left and right eye images, and design of TFT-LCD 3D monitor. The viewing angle, zone, and image quality of the Polarization-type Stereoscopic Display (SM500TFT-3D) system which we have developed using 15 Samsung TFT-1.CD with a screen resolution of 1024×768 pixels were measured and compared with those of Electric Shutter-type Stereoscopic Display system. The result of experiments shows that the Polarization-type Stereoscopic Display System using TFT-LCD has a wade viewing angle and zone which Is necessary fort multi-view and it has better image quality and stability of the optical performances than the Electric Shutter-type does.

  • PDF

Image Restoration Algorithm Considering Pixel Distribution in AWGN Environments (AWGN 환경에서 화소 분포를 고려한 영상복원 알고리즘)

  • Kwon, Se-Ik;Kim, Nam-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.7
    • /
    • pp.1687-1693
    • /
    • 2015
  • Recently, demand for digital image processing devices increases rapidly, more clear images have been required. But, in the process of digital image acquisition, processing and transmission, image degradation occurs due to various external reasons and researches about noise reduction are on the rise. Therefore, this study suggested the algorithm to process AWGN(additive white Gaussian noise) by separately processing as three levels according to the pixel distribution in the mask in order to remove AWGN(additive white Gaussian noise) which is added in the image. Regarding the processed results by applying Barbara images which were damaged by AWGN(σ = 15), suggested algorithm showed the improvement by 2.87[dB], 2.95[dB], 2.88[dB], 1.52[dB], 1.49[dB], 1.58[dB] and 1.25[dB] respectively compared with the existing MF(5 × 5), A-TMF(5 × 5), AWMF(5 × 5), MF(3 × 3), A-TMF(3 × 3), AWMF(3 × 3), GF(5 × 5).

Three-dimensional image processing using integral imaging method (집적 영상법을 이용한 3차원 영상 정보 처리)

  • Min, Seong-Uk
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2005.07a
    • /
    • pp.150-151
    • /
    • 2005
  • Integral imaging is one of the three-dimensional(3D) display methods, which is an autostereoscopic method. The integral imaging system can provide volumetric 3D image which has both vertical and horizontal parallaxes. The elemental image which is obtained in the pickup process by lens array has the 3D information of the object and can be used for the depth perception and the 3D correlation. Moreover, the elemental image which represents a cyber-space can be generated by computer process.

  • PDF

Comparisons of Object Recognition Performance with 3D Photon Counting & Gray Scale Images

  • Lee, Chung-Ghiu;Moon, In-Kyu
    • Journal of the Optical Society of Korea
    • /
    • v.14 no.4
    • /
    • pp.388-394
    • /
    • 2010
  • In this paper the object recognition performance of a photon counting integral imaging system is quantitatively compared with that of a conventional gray scale imaging system. For 3D imaging of objects with a small number of photons, the elemental image set of a 3D scene is obtained using the integral imaging set up. We assume that the elemental image detection follows a Poisson distribution. Computational geometrical ray back propagation algorithm and parametric maximum likelihood estimator are applied to the photon counting elemental image set in order to reconstruct the original 3D scene. To evaluate the photon counting object recognition performance, the normalized correlation peaks between the reconstructed 3D scenes are calculated for the varied and fixed total number of photons in the reconstructed sectional image changing the total number of image channels in the integral imaging system. It is quantitatively illustrated that the recognition performance of the photon counting integral imaging system can be similar to that of a conventional gray scale imaging system as the number of image viewing channels in the photon counting integral imaging (PCII) system is increased up to the threshold point. Also, we present experiments to find the threshold point on the total number of image channels in the PCII system which can guarantee a comparable recognition performance with a gray scale imaging system. To the best of our knowledge, this is the first report on comparisons of object recognition performance with 3D photon counting & gray scale images.

Stereo Image Insertion using Alteration of DCT Coefficients of Color Channels (칼라채널의 DCT 계수 변경을 이용한 스테레오 영상 삽입)

  • 이호근;천성렬;하영호
    • Proceedings of the IEEK Conference
    • /
    • 2003.11a
    • /
    • pp.175-178
    • /
    • 2003
  • This paper proposes a stereo image insertion technique on DCT coefficients using the embedded method developed in the digital watermarking in due consideration of compatibility with conventional 2D system such JPEG, and MPEG. In conventional transmission method users with conventional digital TV cannot watch the transmitted 3D image sequence as 2D image, because of affectivity of conventional 3D image compression. To give an answer, in this paper, DCT coefficients are changed according to its disparity on YCbCr channels. Our method can insert stereo images into a conventional image compression method based on DCT.

  • PDF

Extracting 2D-Mesh from Structured Light Image for Reconstructing 3D Faces (3차원 얼굴 복원을 위한 구조 광 영상에서의 2차원 메쉬 추출)

  • Lee, Duk-Ryong;Oh, Il-Seok
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2007.11a
    • /
    • pp.248-251
    • /
    • 2007
  • In this paper, we are propose a method to estimate the 2-D mesh from structured light image for reconstruction of 3-D face image. To acquire the structured light image, we are project structured light on the face using the projector. we are extract the projected cross points from the acquire image. The 2-D mesh image is extracted from the position and angle of cross points. In the extraction processing, the error was fixed to extract the correct 2-D mesh.

  • PDF

Representation Techniques for 4-Dimensional MR Images

  • Homma, Kazuhiro;Takenaka, Kenji;Nakai, Yoshihiko;Hirose, Takeshi
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2002.09a
    • /
    • pp.429-431
    • /
    • 2002
  • Metabolic analysis of biological tissues, the interventional radiology in MRT (Magnetic Resonance Treatment) and for clinical diagnoses, representation of 4-Dimensional (4D) structural information (x,y,z,t) of biological tissues is required. This paper discusses image representation techniques for those 4D MR Images. We have proposed an image reconstruction method for ultra-fast 3D MRI. It is based on image interpolation and prediction of un-acquired pictorial data in both of the real and the k-space (the acquisition domain in MRI). A 4D MR image is reconstructed from only two 3D MR images and acquired a few echo signals that are optimized by prediction of the tissue motion. This prediction can be done by the phase of acquired echo signal is proportioned to the tissue motion. On the other hand, reconstructed 4D MR images are represented as a 3D-movie by using computer graphics techniques. Rendered tissue surfaces and/or ROIs are displayed on a CRT monitor. It is represented in an arbitrary plane and/or rendered surface with their motion. As examples of the proposed representation techniques, the finger and the lung motion of healthy volunteers are demonstrated.

  • PDF

A Study on Virtual Reality Management of 3D Image Information using High-Speed Information Network (초고속 정보통신망을 통한 3차원 영상 정보의 가상현실 관리에 관한 연구)

  • Kim, Jin-Ho;Kim, Jee-In;Chang, Chun-Hyon;Song, Sang-Hoon
    • The Transactions of the Korea Information Processing Society
    • /
    • v.5 no.12
    • /
    • pp.3275-3284
    • /
    • 1998
  • In this paper, we deseribe a Medical Image Information System. Our system stores and manages 5 dimensional medical image data and provides the 3 dimensional medical data via the Internet. The Internet standard VR format. VRML(Virtual Reality Modeling Language) is used to represent the 3I) medical image data. The 3D images are reconstructed from medical image data which are enerated by medical imaging systems such ans CT(Computerized Tomography). MRI(Magnetic Resonance Imaging). PET(Positron Emission Tomograph), SPECT(Single Photon Emission Compated Tomography). We implemented the medical image information system shich rses a surface-based rendering method for the econstruction of 3D images from 2D medical image data. In order to reduce the size of image files to be transfered via the Internet. The system can reduce more than 50% for the triangles which represent the surfaces of the generated 3D medical images. When we compress the 3D image file, the size of the file can be redued more than 80%. The users can promptly retrieve 3D medical image data through the Internet and view the 3D medical images without a graphical acceleration card, because the images are represented in VRML. The image data are generated by various types of medical imaging systems such as CT, MRI, PET, and SPECT. Our system can display those different types of medical images in the 2D and the 3D formats. The patient information and the diagnostic information are also provided by the system. The system can be used to implement the "Tele medicaine" systems.

  • PDF

A Study on the Image-Based 3D Modeling Using Calibrated Stereo Camera (스테레오 보정 카메라를 이용한 영상 기반 3차원 모델링에 관한 연구)

  • 김효성;남기곤;주재흠;이철헌;설성욱
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.4 no.3
    • /
    • pp.27-33
    • /
    • 2003
  • The image-based 3D modeling is the technique of generating a 3D graphic model from images acquired using cameras. It is being researched as an alternative technique for the expensive 3D scanner. In this paper, we propose the image-based, 3D modeling system using calibrated stereo cameras. The proposed algorithm for rendering, 3D model consists of three steps, camera calibration, 3D reconstruction, and 3D registration step. In the camera calibration step, we estimate the camera matrix for the image aquisition camera. In the 3D reconstruction step, we calculate 3D coordinates using triangulation from corresponding points of the stereo image. In the 3D registration step, we estimate the transformation matrix that transforms individually reconstructed 3D coordinates to the reference coordinate to render the single 3D model. As shown the result, we generated relatively accurate 3D model.

  • PDF

3D Image Coding Using DCT and Hierarchical Segmentation Vector Quantization (DCT와 계층 분할 벡터 양자화를 이용한 3차원 영상 부호화)

  • Cho Seong Hwan;Kim Eung Sung
    • Journal of Internet Computing and Services
    • /
    • v.6 no.2
    • /
    • pp.59-68
    • /
    • 2005
  • In this paper, for compression and transmission of 3D image, we propose an algorithm which executes 3D discrete cosine transform(DCT) for 3D images, hierarchically segments 3D blocks of an image in comparison with the original image and executes finite-state vector quantization(FSVQ) for each 3D block. Using 3D DCT coefficient feature, a 3D image is segmented hierarchically into large smooth blocks and small edge blocks, then the block hierarchy informations are transmitted. The codebooks are constructed for each hierarchical blocks respectively, the encoder transmits codeword index using FSVQ for reducing encoded bit with hierarchical segmentation information. The new algorithm suggested in this paper shows that the quality of Small Lobster and Head image increased by 1,91 dB and 1.47 dB respectively compared with those of HFSVQ.

  • PDF