• 제목/요약/키워드: 3D Feature Vector

검색결과 99건 처리시간 0.028초

구면좌표계 기반에서 3차원 모델 검색 (3D Model Retrieval based on Spherical Coordinate System)

  • 송주환;최성희
    • 전자공학회논문지 IE
    • /
    • 제46권1호
    • /
    • pp.37-43
    • /
    • 2009
  • 본 논문에서는 구면 좌표계 기반에서 3차원 모델을 검색하는 새로운 알고리즘을 제안한다. 3차원 모델 위의 임의의 점들의 좌표(x, y, z)를 구하고, 이 좌표들을 구면좌표계의 좌표로 변환한다. 이 샘플들의 위도(zenith)의 분포를 3차원 모델의 특징으로 정의한다. 임의의 샘플 좌표를 구하기 위해 우리는 Osada가 제안한 방법을 사용하였고, 좌표축을 정규화하기 위하여 PCA 알고리즘을 사용하였다. 데이터는 프린스턴 대학의 벤치마크 데이터를 사용하였으며 Vranic이 제안한 depth buffer-based feature vector 알고리즘과 비교하였고, 본 논문에서 제안한 방법이 정확도에서 12.6% 더 정확하게 모델을 검색하였다.

For the Association between 3D VAR Model and 2D Features

  • Kiuchi, Yasuhiko;Tanaka, Masaru;Fujiki, Jun;Mishima, Taketoshi
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2002년도 ITC-CSCC -3
    • /
    • pp.1404-1407
    • /
    • 2002
  • Although we look at objects as 2D images through our eyes, we can reconstruct the shape and/or depth of objects. In order to realize this ability using computers, it is required that the method which can estimate the 3D features of object from 2D images. As feature which represents 3D shapes effectively, three dimensional vector autoregressive model is pro- posed. If this feature is associated other feature of 2D shape, then above aim might be achieved. On the other hand, as feature which represents 2D shapes, quasi moment features is proposed. As the first step of association of these features, we constructed real time simulator that computes both of two features concurrently from object data (3D curves) . This simulator can also rotate object and estimate the rotation The method using 3D VAR model estimates the rotation correctly, but the estimation by quasi moment features includes much errors. This reason would be that projected images are constructed by the points only, and doesn't have enough sizes to estimate the correct 3D rotation parameters.

  • PDF

Classification of Infant Crying Audio based on 3D Feature-Vector through Audio Data Augmentation

  • JeongHyeon Park;JunHyeok Go;SiUng Kim;Nammee Moon
    • 한국컴퓨터정보학회논문지
    • /
    • 제28권9호
    • /
    • pp.47-54
    • /
    • 2023
  • 영아는 비언어적 의사 소통 방식인 울음이라는 수단을 사용한다[1]. 하지만 영아의 울음소리를 파악하는 것에는 어려움이 따른다. 영아의 울음소리를 해석하기 위해 많은 연구가 진행되었다[2,3]. 이에 본 논문에서는 다양한 음성 데이터 증강을 통한 3D 특징 벡터를 이용한 영아의 울음소리 분류를 제안한다. 연구에서는 총 5개의 클래스 복통, 하품, 불편함, 배고픔, 피곤함(belly pain, burping, discomfort, hungry, tired)로 분류된 데이터 세트를 사용한다. 데이터들은 5가지 기법(Pitch, Tempo, Shift, Mixup-noise, CutMix)을 사용하여 증강한다. 증강 기법 중에서 Tempo, Shift, CutMix 기법을 적용하였을 때 성능의 향상을 보여주었다. 최종적으로 우수한 데이터 증강 기법들을 동시 적용한 결과 단일 특징 벡터와 오리지널 데이터를 사용한 모델보다 17.75%의 성능 향상을 도출하였다.

3D Model Retrieval Based on Orthogonal Projections

  • Wei, Liu;Yuanjun, He
    • International Journal of CAD/CAM
    • /
    • 제6권1호
    • /
    • pp.117-123
    • /
    • 2006
  • Recently with the development of 3D modeling and digitizing tools, more and more models have been created, which leads to the necessity of the technique of 3D mode retrieval system. In this paper we investigate a new method for 3D model retrieval based on orthogonal projections. We assume that 3D models are composed of trigonal meshes. Algorithms process first by a normalization step in which the 3D models are transformed into the canonical coordinates. Then each model is orthogonally projected onto six surfaces of the projected cube which contains it. A following step is feature extraction of the projected images which is done by Moment Invariants and Polar Radius Fourier Transform. The feature vector of each 3D model is composed of the features extracted from projected images with different weights. Our System validates that this means can distinguish 3D models effectively. Experiments show that our method performs quit well.

사실적인 3D 얼굴 모델링 시스템 (Realistic individual 3D face modeling)

  • 김상훈
    • 한국전자통신학회논문지
    • /
    • 제8권8호
    • /
    • pp.1187-1193
    • /
    • 2013
  • 본 논문은 사실적인 3D 얼굴 모델링과 얼굴 표정 생성 시스템을 제안한다. 사실적인 3D 얼굴 모델링 기법에서 개별적인 3D 얼굴 모양과 텍스쳐 맵을 만들기 위해 Generic Model Fitting 기법을 적용하였다. Generic Model Fitting에서 Deformation Function을 계산하기 위해 개별적인 얼굴과 Generic Model 사이의 대응점을 결정하였다. 그 후, Calibrated Stereo Camera로부터 캡쳐 된 영상들로부터 특징점을 3D로 복원하였다. 텍스쳐 매핑을 위해 Fitted된 Generic Model을 영상으로 Projection하였고 사전에 정의된 Triangle Mesh에서 텍스쳐를 Generic Model에 매핑 하였다. 잘못된 텍스쳐 매핑을 방지하기 위해, Modified Interpolation Function을 사용한 간단한 방법을 제안하였다. 3D 얼굴 표정을 생성하기 위해 Vector Muscle기반 알고리즘을 사용하고, 보다 사실적인 표정 생성을 위해 Deformation 과 vector muscle 기반의 턱 rotation을 적용하였다.

계층적 특징 학습을 이용한 3차원 물체 인식 시스템의 설계 (Design of the 3D Object Recognition System with Hierarchical Feature Learning)

  • 김주희;김동하;김인철
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제5권1호
    • /
    • pp.13-20
    • /
    • 2016
  • 본 논문에서는 계층적 특징 학습을 이용하여 물체의 컬러 영상과 깊이 영상으로부터 해당 물체가 속한 범주와 개체, 그리고 다양한 속성들을 효과적으로 인식할 수 있는 시스템을 제안한다. 본 시스템의 전처리 단계에서는 물체의 깊이 영상을 물체의 모양 정보를 좀 더 효과적으로 표현할 수 있는 표면 법선 벡터 데이터로 변환하고, 특징 학습 단계에서는 물체의 컬러 영상과 표면 법선 벡터 데이터로부터 두 단계에 걸쳐 패치 단위 특징과 이미지 단위의 특징을 추출해낸다. 그리고 추출된 특징 벡터들과 SVM 학습 알고리즘을 이용하여 각기 독립적인 다수의 분류 모델들을 학습한다. 미국 워싱턴 대학의 RGB-D 물체 데이터 집합을 이용한 실험을 통해, 본 논문에서 제안하는 물체 인식 시스템의 높은 성능을 확인할 수 있었다.

3차원 물체인식을 위한 신경회로망 인식시트메의 설계

  • 김대영;이창순
    • 한국산업정보학회논문지
    • /
    • 제2권1호
    • /
    • pp.73-87
    • /
    • 1997
  • Multilayer neural network using a modified beackpropagation learning algorithm was introduced to achieve automatic identification of different types of aircraft in a variety of 3-D orientations. A 3-D shape of an aircraft can be described by a library of 2-D images corresponding to the projected views of an aircraft. From each 2-D binary aircraft image we extracted 2-D invariant (L, Φ) feature vector to be used for training neural network aircraft classifier. Simulations concerning the neural network classification rate was compared using nearest-neighbor classfier (NNC) which has been widely served as a performance benchmark. And we also introduced reliability measure of the designed neural network classifier.

3-D DCT를 이용한 비디오 장면 전환 검출 (Video Scene Change Detection Using a 3-D DCT)

  • 우석훈;원치선
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2003년도 신호처리소사이어티 추계학술대회 논문집
    • /
    • pp.157-160
    • /
    • 2003
  • In this paper. we propose a simple and effective video scene change detection algorithm using a 3-D DCT. The 3-D DCT that we employ is a 2$\times$2$\times$2 DCT has simple computations composed only of adding and shifting operations. The simple average values of multiresolution represented video using the 2$\times$2$\times$2 DCT are used as a detection feature vector.

  • PDF

특징기반 플라스틱 사출제품을 위한 유전자 알고리즘과 Support Vector Regression 기반의 하이브리드 비용 평가 모델 (A Genetic Algorithm and Support Vector Regression based Hybrid Cost Estimation Model for Feature-based Plastic Injection Products)

  • 서광규
    • 대한안전경영과학회지
    • /
    • 제14권3호
    • /
    • pp.269-276
    • /
    • 2012
  • 플라스틱 사출 제품은 다양한 가전제품과 하이테크 제품에 널리 사용되고 있다. 그러나 현재의 치열한 경쟁적 비즈니스 환경에서 플라스틱 사출 제품 제조업자들은 고객을 만족시키면서 경쟁력을 얻기 위하여 다른 경쟁자들보다 먼저 새로운 제품을 시장에 출시하고 신제품의 개발기간을 줄이기 위한 노력을 할 여유가 부족하다. 따라서 무한경쟁의 시장에서 살아남기 위해서는 제조업자들은 시장 마켓 점유를 빠르게 올리는 것과 동시에 제품의 가격 경쟁력을 가져야 한다. 특징기반 모델의 구조는 현재 연구에서 3D 제작 도구로서 일반적으로 적용되고 있으며 신제품 개발 엔지니어들이 새로운 제품의 개념을 개발하는 데에도 널리 사용되고 있다. 본 연구에서는 특징기반 플라스틱 사출제품을 위한 유전자 알고리즘과 Support Vector Regression (SVR) 기반의 새로운 하이브리드 비용 평가 모델을 제안한다. 제안하는 하이브리드 모델은 기존의 플라스틱 사출제품의 비용평가절차와 계산을 위해 필요로 하는 변수들을 극적으로 간단하게 하고 줄일 수 있다. 사례연구에서는 제안하는 하이브리드 모델과 기존의 multilayer perceptron networks (MLP) 및 pure SVR과의 비교분석을 통하여 제안모델이 플라스틱 사출 제품의 개발단계에서의 비용평가문제를 해결하는데 효율성과 효과성이 있음을 입증한다.

Analogical Face Generation based on Feature Points

  • Yoon, Andy Kyung-yong;Park, Ki-cheul;Oh, Duck-kyo;Cho, Hye-young;Jang, Jung-hyuk
    • Journal of Multimedia Information System
    • /
    • 제6권1호
    • /
    • pp.15-22
    • /
    • 2019
  • There are many ways to perform face recognition. The first step of face recognition is the face detection step. If the face is not found in the first step, the face recognition fails. Face detection research has many difficulties because it can be varied according to face size change, left and right rotation and up and down rotation, side face and front face, facial expression, and light condition. In this study, facial features are extracted and the extracted features are geometrically reconstructed in order to improve face recognition rate in extracted face region. Also, it is aimed to adjust face angle using reconstructed facial feature vector, and to improve recognition rate for each face angle. In the recognition attempt using the result after the geometric reconstruction, both the up and down and the left and right facial angles have improved recognition performance.