For the Association between 3D VAR Model and 2D Features
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Abstract: Although we look at objects as 2D images
through our eyes, we can reconstruct the shape and/or
depth of objects. In order to realize this ability using
computers, it is required that the method which can
estimate the 3D features of object from 2D images.

As feature which represents 3D shapes effectively,
three dimensional vector autoregressive model is pro-
posed. If this feature is associated other feature of 2D
shape, then above aim might be achieved.

On the other hand, as feature which represents 2D
shapes, quasi moment features is proposed.

As the first step of association of these features, we
constructed real time simulator that computes both of
two features concurrently from object data (3D curves).
This simulator can also rotate object and estimate the
rotation.

The method using 3D VAR model estimates the rota-
tion correctly, but the estimation by quasi moment fea-
tures includes much errors. This reason would be that
projected images are constructed by the points only, and
doesn’t have enough sizes to estimate the correct 3D ro-
tation parameters.

1. Introduction

Although we look at objects as 2D images through
our eyes, we can reconstruct the shape and/or depth
of objects. In order to realize this using computers, it
is required that the method which can estimate the 3D
features of object from 2D images. As feature which rep-
resents 3D shapes effectively, three dimensional vector
autoregressive model is proposed [1}[2][3]. If this feature
is associated other feature of 2D shape, then above aim
might be achieved.

3D VAR model is constructed on the quaternion,
which is the basis of SU(2) (the rotation group in two
dimensional complex space). This enables us to define
the 3D VAR model as the external products of 3D se-
quential data and the autoregressive (AR) coefficients,
unlike the usual AR models. Therefore the 3D VAR
model has some prominent features. For example, the
AR coefficients of the 3D VAR model behave like vectors
under any three dimensional rotation.

On the other hand, quasi moment features, which is
presented Tanaka[7] ([8] also gives the equal features up
to the second order), is also the invariant / covariant
feature under rotation. Shimai, Kawamoto and Tanaka
et al. estimated the rotation from two images captured

by active camera (before rotation and after rotation)
using quasi moment features[9]. Quasi moment features
are expected as effective method for representation of
2D features.

As the first step of association of these features, we
constructed real time simulator that computes both of
two features concurrently from object data (3D curves).
This simulator can also rotate object and estimate the
rotation. In this paper, we made some experiment us-
ing this simulator to evaluate quasi moment features as
which treats 2D features of the three dimensional curves.

2. 3D VAR model and Invariants
When a sequential data set

{2 = (@, 4, 2) T35 (2—j = zw—j)

is given, 3D VAR model of the m-th order is defined by
m
ﬁj = sz'_k X afn
k=1

The coefficients {a%,}7 , of 3D VAR model are called
3D VAR coefficients which are determined to minimize
the mean square error[6].

We have used the third order 3D VAR model to verify
the behavior of 3D VAR coefficients, and the 3x 3 matrix
A, which the p-th column is af, that is,

A=(a; aj a}). @

In this case, the invariants derived from 3D VAR co-
efficients of the third order is represented by the matrix
G, of its (p,q) components are the inner product be-
tween af and af, that is,

L (YT @pTed (aTad
G=A"A=| (a3 a; (af)Ta3 (af)Ta3 | (2)
(a3)Ta3 (a5)Ta3 (af)Ta3

which has the invariance under 3D rotation and the scal-
ing.

From the experiment processing 3D curves we have
made, it is proved that this invariant has following fea-
tures :

o When a 3D curve is on some plane, that is, the

3D curve is the subset of the plane, it is easy to
understand that the rank of G is 1. However, the
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rank of G can be 1, even if the curve doesn’t lie on
the plane.

o When the 3D rotation of which transformed the
curves identity is unique, the rank of G has to be 3,
however, when the curve has high symmetry, there
are many orthogonal matrices which transform the
curve into the same curve. Therefore, the rank of
G has to be less than 3, that is, G is the singular
matrix.

e When the points are ordered randomly, the eigen
values of G tend to be small and not biased, how-
ever, when the points are ordered periodically, the
eigen values of G is biased and the rank of G is
expected to be 1.

3. 2D Features Using Quasi Moment
Features

Quasi moment features, which is presented Tanaka/[7)
([8] also gives the equal features up to the second order),
can be computed using projected images of objects and
its focal length, and this feature is able to treat the
rotation of objects because the 2nd order quasi moment
feature T behaves tensor under 3D rotation.

Projection image function F(z,y) is obtained
through a projection of an object onto 2D plane Z = f
(in short, f is the focal length). If the object constructed
with point P(P = (X,Y,Z)7), point P is projected
along following equation.

Y
y=7,7 (3)
The Oth order quasi moment is
S= / / S(a, y)F(z, y)dm(z,y), @)

S(z,y) = 1. (5)
the 1th order quasi moment is

V= / / V(z,5)F(z, 5)dm(z,3), (©)

1 x
V(z,y) = % ‘? ’ (M)

the 2th order quasi moment is

T= / / T(2,y)F(z,y)dm(z,y), ®)

1 22 2y zf
T(y) = 13 gw ?Z ?jﬁ; 9)

X
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= V{z,yp)V(z, 97T, (10)
where
fdzdy
dm(z,y) = 11
@) = s (1)
is the invariant measure, and
k=+Vz?+y2 + f2. (12)

4. Experiment and Results

We have an experiment of processing 6 three dimen-
sional curves using our simulator. The experiment along
the following procedure:

1. Rotate the curves.

2. Estimate the rotation angle and axis using 3D VAR

model and quasi moment features.

3. Compare these two estimated rotation and true ro-

tation.

The results are indicated from figure 1 to figure 6
and table 1. (a) figures indicate the initial pattern of
curves, and (b) figures indicate the rotated pattern. (c)
figures indicate the projected image of initial pattern,
and (d) figures indicate the projected image rotated pat-
tern. The rotation parameters are written in the table
1. “True” rows indicate the true rotation parameters,
“3DVAR” rows indicate the estimated rotation param-
eters using 3D VAR model, and “QMF” rows indicate
the estimated rotation parameters using quasi moment
features. The error rate comparing the estimated ro-
tation and the true rotation is written at the second
row of “QMF” rows. On the “Axis” column, correla-
tion between the true axis and the estimated axis is also
written.

Table 1. The result of the simulation

Data | Method | Angle Axis
Curvel | True 145.7 -0.1131 -0.3424 -0.9327
Twisted | 3DVAR | 145.7 -0.1131 -0.3424 -0.9327
circle | QMF 98.10 0.4165 -0.8887 0.1915
(32.66%) | (0.0785,92.15%)
Curve2 | True 67.99 0.6284 -0.3035 0.7162
Knotl | 3DVAR | 67.99 0.6284 -0.3036 0.7162
QMF 104.2 0.8965 -0.3925 -0.2058
(63.22%) | (0.5351,46.49%)
Curve3 | True 37.76 -0.6315 0.1637 0.7579
Knot2 | 3DVAR | 37.76 -0.6315 0.1637 0.7579
QMF 44.63 -0.5626 0.0976 0.8209
(18.19%) | (0.9935,0.6545%)
Curved | True 43.78 0.3277 0.1233 -0.9367
Random | 3DVAR | 43.78 0.3277 0.1233 -0.9367
QMF 44.63 0.3535 0.0892 -0.9312
(1.948%) | (0.9991,0.0932%)
Curveb | True 48.00 -0.4659 -0.1797 -0.8664
Spirall | 3DVAR | 48.00 -0.4659 -0.1797 -0.8664
QMF 41.91 -0.5079 -0.2094 -0.8356
(12.70%) | (0.9982,0.1797%)
Curve6 | True 66.61 -0.6747 -0.2991 -0.6747
Spiral2 | 3DVAR | 66.61 -0.6747 -0.2991 -0.6747
QMF 90.01 -0.6803 0.6164 0.3965
(35.14%) | (0.0072,99.29%)

As we can know from table 1, the estimation using
quasi moment features includes much errors. This rea-
son would be that projected images are constructed by
the points only, and doesn’t have enough sizes to esti-
mate the correct 3D rotation parameters. However, the
result of random distributed curve (curve 4) includes
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small error. This reason would be that points are dis-
tributed uniformly in the projected image of random
distributed curve.

5. Conclusion

We expect that the association between the feature
from the three dimensional space (invariants from 3D
VAR coefficients) and the 2D features (quasi moment
features) might be useful for object understanding.

As the first step of it, we constructed real time sim-
ulator that computes both of two features from object
data (3D curves) concurrently. This simulator can also
rotate object and estimate the rotation. The method
using 3D VAR model estimates the rotation correctly,
but the estimation using quasi moment features includes
much errors. This reason would be that projected im-
ages are constructed by the points only, and doesn’t
have enough sizes to estimate the correct 3D rotation
parameters. To use quasi moment features as 2D fea-
tures of projected image of 3D curve, one more step
will be needed. For example, making projected images
magnifying the points of 3D curves is considered.

References

{1} J. Fujiki and M. Tanaka: “ Properties of Three Dimensional
Vector Autoregressive model”, Proc. SPIE99, Denver, Col-
orado, Vision Geometry VIII, vol. 3811, pp. 224-235, July
1999.

[2] J. Fujiki and M. Tanaka: “ On the Three Dimensional Vec-
tor Autoregressive coefficients”, Proc. SPIE00, San Diego,
California, Vision Geometry IX, vol. 4117, pp. 166-175, July
2000.

[3] J. Fujiki, Y. Kiuchi, M. Tanaka and T. Mishima: “Invariants
from the Three Dimensional Vector Autoregressive model”,
Proc. SPIEO1, San Diego, California, Vision Geometry X,
vol. 4476, 01, pp. 1-12, July 2001.

[4] T. Kurita, 1. Sekita, and N. Otsu: “Invariant distance mea-
sures for planar shapes based on complex autoregressive
model”, Pattern Recognition, Vol. 27, No. 7, pp. 903-911,
1994. :

[8] I Sekita, T. Kurita and N. Otsu: “Complex Autoregressive
Model for Shape Recognition”, IEEE trans. PAMI, Vol.14,
No. 14, pp. 489-496, 1992,

(6] M. Tanaka: “Three dimensional autoregressive model under
rotation”, Proc. SPIE96, Denver, Colorado, Vision Geome-
try V, vol. 2826, pp. 172-179, August 1996.

[7] M.Tanaka: “Finite transformation of quasi-moment,” SPIE
Vision Geometry VI, vol.3168, 1997

[8] K.Kanatani: “Camera rotation invariance of image charac-
teristics,” Computer Vision, Graphics, and Image Process-
ing, vol.39, pp.328-354, 1987

{9] H. Shimai, T. Kawamoto, T. Shigehara, T. Mishima, M.
Tanaka and T. Kurita: “Estimation of Camera Rotation Us-
ing Quasi Moment Features”, IEICE Transactions on Funda-
mental of Electronics, Communications and Computer Sci-
ence, Vol.E83-A, No.6, pp.1005-1013, 2000.

©

(a)Initial pattern

Nayet®

(c)Projected image
of initial pattern

(d)Projected image
of rotated pattern

Figure 1. Curvel ...

Twisted circle

&

(a)Initial pattern

%3

(c)Projected image
of initial pattern

(d)Projected image
of rotated pattern

Figure 2. Curve2 ... Knotl

ITC-CSCC 2002




(a)Initial pattern

®

(c)Projected image
of initial pattern

(b)Rotated Pattern

&

(d)Projected image
of rotated pattern

(a)Initial pattern

{c)Projected image
of initial pattern

(b)Rotated Pattern

A1 2J
A
$e
Ly

A
I”‘\.

-~

(d)Projected image
of rotated pattern

Figure 3. Curve3 ... Knot2

Figure 5. Curveb

... Spirall

(a)Initial pattern

Y
?;ﬁs
Ay .:

(c)Projected image
of initial pattern

{b)Rotated Pattern

o,

et

(d)Projected image
of rotated pattern

(a)Initial pattern

{c)Projected image
of initial pattern

(b)Rotated Pattern

.
C A
Rt

‘e &
et

3
X RN

.
.

(d)Projected image
of rotated pattern

.. *
. e LN

.

.
.

Figure 4. Curved ...

Random distributed

Figure 6. Curve6

... Spiral2

ITC-CSCC 2002




