• Title/Summary/Keyword: 3D Design Model

Search Result 2,168, Processing Time 0.031 seconds

Numerical and experimental investigation for monitoring and prediction of performance in the soft actuator

  • Azizkhani, Mohammadbagher;sangsefidi, Alireza;Kadkhodapour, Javad;Anaraki, Ali Pourkamali
    • Structural Engineering and Mechanics
    • /
    • v.77 no.2
    • /
    • pp.167-177
    • /
    • 2021
  • Due to various benefits such as unlimited degrees of freedom, environment adaptability, and safety for humans, engineers have used soft materials with hyperelastic behavior in various industrial, medical, rescue, and other sectors. One of the applications of these materials in the fabrication of bending soft actuators (SA) is that they have eliminated many problems in the actuators such as production cost, mechanical complexity, and design algorithm. However, SA has complexities, such as predicting and monitoring behavior despite the many benefits. The first part of this paper deals with the prediction of SA behavior through mathematical models such as Ogden and Darijani, and its comparison with the results of experiments. At first, by examining different geometric models, the cubic structure was selected as the optimal structure in the investigated models. This geometrical structure at the same pressure showed the most significant bending in the simulation. The simulation results were then compared with experimental, and the final gripper model was designed and manufactured using a 3D printer with silicone rubber as for the polymer part. This geometrical structure is capable of bending up to a 90-degree angle at 70 kPa in less than 2 seconds. The second section is dedicated to monitoring the bending behavior created by the strain sensors with different sensitivity and stretchability. In the fabrication of the sensors, silicon is used as a soft material with hyperelastic behavior and carbon fiber as a conductive material in the soft material substrate. The SA designed in this paper is capable of deforming up to 1000 cycles without changing its characteristics and capable of moving objects weigh up to 1200 g. This SA has the capability of being used in soft robots and artificial hand making for high-speed objects harvesting.

Methodology of Fire Safety IFC Schema Extension through Architectural WBS Hierarchy Analysis (건축 WBS 위계 분석을 통한 소방 IFC 스키마 확장 방법론에 관한 연구)

  • Kim, Tae-Hoon;Won, Jung-Hye;Hong, Soon-Min;Choo, Seung-Yeon
    • Journal of KIBIM
    • /
    • v.12 no.4
    • /
    • pp.70-79
    • /
    • 2022
  • As BIM(Building Information Modeling) technology advances in architecture around the world, projects and industries using BIM are increasing. Unlike previous developments that were limited to buildings, BIM is now spreading to other fields such as civil engineering and electricity. In architecture, BIM is used in the entire process from design to maintenance of a building, and IFC(Industry Foundation Classes), a neutral format with interoperability, is used as an open BIM format. Since firefighting requires intuitive 3D models for evacuation and fire simulations, BIM models are desirable. However, due to the BIM model, which was developed centered on building objects, there are no objects and specific properties for fire evacuation in the IFC scheme. Therefore, in this study, when adding a new object in the firefighting area to the IFC schema, the IFC interoperability is not broken and the building WBS(Work Breakdown Structure) is analyzed with a hierarchical system similar to the IFC format to define the scope for a new object and the firefighting part within of the building WBS to derive a firefighting HBS(Hierarchy Breakdown Structure) with the extension of the object-oriented IFC file. And according to HBS, we propose an IFC schema extension method. It is a methodology that allows BIM users to instantly adapt the IFC schema to their needs. Accordingly, the methodology derived from this study is expected to be expanded in various areas to minimize information loss from IFC. In the future, we will apply the IFC extension methodology to the actual development process using HBS to verify that it is actually applicable within the IFC schema.

Strength Analysis of Complex Gear Train for Transmission of 21-Ton Grade Wheel Excavator (21톤급 휠 굴착기용 트랜스미션의 기어 트레인에 대한 강도 해석)

  • Lee, JunHee;Bae, MyungHo;Cho, YonSang
    • Tribology and Lubricants
    • /
    • v.38 no.5
    • /
    • pp.179-184
    • /
    • 2022
  • The power train of transmission for 21-ton grade wheel excavator makes use of a complex gear train composed of a planetary and helical gear system to drive the wheel excavator by transmitting power to the axle. The complex gear train with a shift mode is an important part of the transmission because of strength problems in an extreme environment. To calculate the specifications of the complex gear train and analyze the gear bending and compressive stresses of the complex gear train, this study analyzes gear bending and compressive stresses accurately for the optimal design of the complex gear train with respect to cost and reliability. In this article, the gear bending and compressive stresses of the complex gear train are calculated using the Lewes and Hertz equation. Evaluating the results with the data of the allowable bending and compressive stress from the stress and number of cycles curves of the gears verified the calculated specifications of the complex gear train. A computer structure analysis is performed with the 3D model of the planetary and helical gears to analyze the structure strength of the complex gear train. The results demonstrate that the durability and strength of the complex gear train are safe, because the safety factors of the bending and compressive stresses are more than 1.0.

Static buckling analysis of bi-directional functionally graded sandwich (BFGSW) beams with two different boundary conditions

  • Berkia, Abdelhak;Benguediab, Soumia;Menasria, Abderrahmane;Bouhadra, Abdelhakim;Bourada, Fouad;Mamen, Belgacem;Tounsi, Abdelouahed;Benrahou, Kouider Halim;Benguediab, Mohamed;Hussain, Muzamal
    • Steel and Composite Structures
    • /
    • v.44 no.4
    • /
    • pp.503-517
    • /
    • 2022
  • This paper presents the mechanical buckling of bi-directional functionally graded sandwich beams (BFGSW) with various boundary conditions employing a quasi-3D beam theory, including an integral term in the displacement field, which reduces the number of unknowns and governing equations. The beams are composed of three layers. The core is made from two constituents and varies across the thickness; however, the covering layers of the beams are made of bidirectional functionally graded material (BFGSW) and vary smoothly along the beam length and thickness directions. The power gradation model is considered to estimate the variation of material properties. The used formulation reflects the transverse shear effect and uses only three variables without including the correction factor used in the first shear deformation theory (FSDT) proposed by Timoshenko. The principle of virtual forces is used to obtain stability equations. Moreover, the impacts of the control of the power-law index, layer thickness ratio, length-to-depth ratio, and boundary conditions on buckling response are demonstrated. Our contribution in the present work is applying an analytical solution to investigate the stability behavior of bidirectional FG sandwich beams under various boundary conditions.

Stability analysis of roof-filling body system in gob-side entry retained

  • Jinlin Xin;Zizheng Zhang;Weijian Yu;Min Deng
    • Geomechanics and Engineering
    • /
    • v.36 no.1
    • /
    • pp.27-37
    • /
    • 2024
  • The roof-filling body system stability plays a key role in gob-side entry retained (GER). Taking the GER of the 1103 belt transportation roadway in Heilong Coal Mine as engineering background, stability analysis of roof-filling body system was conducted based on the cusp catastrophe theory. Theoretical results showed that the current design parameters of 1103 belt transportation roadway could ensure the roof-filling body system stable during the resistance-increasing support stage of the filling body and the stable support stage of the filling body. Moreover, a verified global numerical model in FLAC3D was established to analyze the failure characteristics including surrounding rock deformation, stress distribution, and plastic zone. Numerical simulation indicated that the width-height ratio of the filling body had a great influence on the stability of the roof-filling body system. When the width-height ratio was greater than 0.62, with the decrease of the width-height ratio, the peak stress of the filling body gradually decreased; when the width-height ratio was greater than 0.92, as the distance to the roadway increased, the roof stress increased and then decreased. The theoretical analysis and numerical simulation findings in this study provide a new research method to analyze the stability of the roof-filling body system in GER.

Development of Thermal Performance Prediction for Large Planar Military Antenna with Multi-Cooling Channels (다중 냉각유로가 적용된 수랭식 군사용 대면적 안테나의 열성능 예측 기술)

  • YeRyun Lee;SungWook Jang;PilGyeong Choi;NohJin Kwak;JunJung Park
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.27 no.1
    • /
    • pp.43-50
    • /
    • 2024
  • Large planar military antenna boasts a range of electrical components, including TRA(Transmit-Receive Assembly), signal processors, etc. which engage in computations and calculations. These processes generate a significant amount of heat, leading to unforeseen consequences for the equipment. To mitigate these adverse effects, it's imperative to implement a cooling system that can effectively reduce heat-related issues. Given the antenna's intricate nature and the multitude of components it houses, a two-step estimation process is necessary. The first step involves a comprehensive model calculation to determine the total flow characteristics, while the second step entails a thermal analysis of individual TRA set. In this study, we depicted an antenna set using simplified 3D models of its components, considering their material and thermal properties. The sequential analysis process facilitated the calculation of branched flow rates, providing insights into the individual TRA. This approach also allowed us to design a cooling system for the TRA set, assessing its thermal stability in high-temperature environments. To ensure the optimal performance of TRA, breaking down the analysis into stages based on the cooling system's structure can assist operators in predicting numerical results more effectively.

Enhancing Technology Learning Capabilities for Catch-up and Post Catch-up Innovations (기술학습역량 강화를 통한 추격 및 탈추격 혁신 촉진)

  • Bae, Zong-Tae;Lee, Jong-Seon;Koo, Bonjin
    • The Journal of Small Business Innovation
    • /
    • v.19 no.2
    • /
    • pp.53-68
    • /
    • 2016
  • Motivation and activities for technological learning, entrepreneurship, innovation, and creativity are driving forces of economic development in Asian countries. In the early stages of technological development, technological learning and entrepreneurship are efficient ways in which to catch up with advanced countries because firms can accumulate skills and knowledge quickly at relatively low risk. In the later stages of technological development, however, innovation and creativity become more important. This study aims to identify a) the factors (learning capabilities) that influence technological learning performance and b) barriers to enhancing innovation capabilities for the creative economy and organizations. The major part of this study is related to learning capabilities in the post-catch-up era. Based on a literature review and observations from Korean experiences, this study proposes a technological learning model composed of various influencing factors on technological learning. Three hypotheses are derived, and data are collected from Korean machine tool manufacturers. Intense interviews with CEOs and R&D directors are conducted using structured questionnaires. Statistical analysis, such as correlation and ANOVA are then carried out. Furthermore, this study addresses how to enhance innovation capabilities to move forward. Innovation enablers and barriers are identified by case studies and policy analysis. The results of the empirical study identify several levels of firms' learning capabilities and activities such as a) stock of technology, b) potential of technical labor, c) explicit technological efforts, d) readiness to learn, e) top management support, f) a formal technological learning system, g) high learning motivation, h) appropriate technology choice, and i) specific goal setting. These learning capabilities determine firms' learning performance, especially in the early stages of development. Furthermore, it is found that the critical factors for successful technological learning vary along the stages of technology development. Throughout the statistical and policy analyses, this study confirms that technological learning can be understood as an intrinsic principle of the technology development process. Firms perform proactive and creative learning in the late stages, while reactive and imitative learning prevails in the early stages. In addition, this study identifies the driving forces or facilitating factors enhancing innovation performance in the post catch-up era. The results of the preliminary case studies and policy analysis show some facilitating factors such as a) the strategic intent of the CEO and corporate culture, b) leadership and change agents, c) design principles and routines, d) ecosystem and collaboration with partners, and e) intensive R&D investment.

  • PDF

DEVELOPMENT OF HIGH SENSITIVE MODEL OF CARIES ACTIVITY TEST FOR EARLY DIAGNOSIS OF DENTAL CARIES (치아우식증의 조기진단을 위한 고감도 우식활성검사 모형개발)

  • Lee, Sang-Ho;Lee, Chang-Seop
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.27 no.1
    • /
    • pp.169-179
    • /
    • 2000
  • The purpose of this study is to develop the system which convert the optical difference of teeth texture between intact enamel and incipient caries lesion into shade difference by laser fluorescence and to develop new and simple caries activity test using laser fluorescence. The experimental design of this study consists of three parts. In first part, a new method for the in vitro assessment of changes in initial enamel caries lesion of Bovine teeth using laser fluorescence is tested. In second part, in vivo assessment undertaken. Number of teeth which showed incipient carious lesion on buccal surface examined by laser fluorescence was compared with the caries activity test of $Cariescreen^{(R)}$ test and other oral environmental test of dDfFtT. In third part, new caries activity test measured by laser fluorescence was developed on the basis of above results and evaluated the sensitivity, specificity, and diagnostic power. Optical density measured by laser fluorescence was increased as increasing the depth of incipient carious lesion and showed high correlation$(\gamma=0.7015)$ with lesion depth. Optical density showed direct proportion to lesion depth. Linear equation was obtained between the optical density and the lesion depth by regression analysis. The result of caries activity test with laser fluorescence showed high correlation with those of $Cariescreen^{(R)}$ test and dDfFtT examination. Caries activity test with laser fluorescence showed 48% of sensitivity, 52% of specificity, and 45% of diagnostic power on the basis of dDfFtT examination, and also showed 48% of sensitivity, 51% of specificity, and 36% of diagnostic power on the basis of $Cariescreen^{(R)}$ test. In regard above result, caries activity test with laser fluorescence considered to be reliable for caries activity test compared with other oral environmental test. and it was also considered to be practical because it would be simple, inexpensive, and time saving method.

  • PDF

Biomechanical Analysis of Different Thoracolumbar Orthosis Designs using Finite Element Method (유한요소 해석을 이용한 정형용 흉·요추 보조기의 형태에 따른 생체역학적 분석)

  • Kim, Y.H.;Jun, S.C.;Jung, D.Y.;Lee, S.J.
    • Journal of rehabilitation welfare engineering & assistive technology
    • /
    • v.6 no.1
    • /
    • pp.45-50
    • /
    • 2012
  • Thoracolumbar orthosis has been used for the rehabilitation of the patients with senile kyphosis. Recently, a number of different thoracolumbar orthosis designs have been introduced but its biomechanical effectiveness still remain unknown. In this study, we compared the pressure distribution on the surface of the trunk and stresses on the orthosis in relation to changes in connecting frame designs (Type 1, one-connecting frame type; Type 2, two-connecting frame type; Type 3, all-in-one type) using finite element (FE) models under different motions of the trunk. The results showed that Type 3 distributed the pressure on the trunk most evenly followed by Type 2 and Type 1 and the difference between Type 1 and Type 2 was negligible. ROM was limited most effectively by Type 3 ($8.5{\sim}9.4^{\circ}$), followed by Type 2 ($11.3{\sim}13.9^{\circ}$) and Type 1 ($12.1{\sim}15.4^{\circ}$). The ratio between the peak von Mises stress and yield strength of each material remained less than 20% regardless of orthosis type indicating low likelihood of component failure. In conclusion, our study found that all-in-one type of orthosis was the most effective design for the conservative treatment of spinal deformity in terms of function and comfort.

  • PDF

Experience of Agent Orange and Depression and Quality of Life: Mixed Method (고엽제 노출 경험과 우울 및 삶의 질: 통합방법론)

  • Joo, Eun-Woo;Lee, Jae-Shin;Kim, Soo-Kyoung;Cha, Tae-Hyun
    • Therapeutic Science for Rehabilitation
    • /
    • v.9 no.4
    • /
    • pp.33-43
    • /
    • 2020
  • Objective: This study used a mixed methods analytical approach to analyze the level of depression in and quality of life of patients who had been exposure to Agent Orange. Methods: Data on the general characteristics, depression level, and the quality of life of 29 patients who were hospitalized because of exposure to Agent Orange were collected. Focus group interviews were conducted with 17 of these 29 patients. Regarding mixed methods, the sequential integrated design model proposed by Teddlie and Tashakkori (2003) was employed. The analytical methods were as follows: (1) general characteristics were examined using frequencies and proportional distributions; (2) depression scores and quality of life scores were assessed using descriptive statistical analysis; and (3) content analysis was used to examine the focus group interview data. Results: The average K-GDS depression score was 19.24 points, and the average WHOQOL-BREF quality of life score was 57.66 points. The focus group interview data yielded 3 topics were named "deployment route", "the manner of exposure to Agent Orange", and "life after Agent Orange exposure". Conclusion: There is an urgent need to increase public awareness, develop a public policy response, and conduct additional research on ground occupational therapy programs that include physical therapy.