• Title/Summary/Keyword: 3D Depth Estimation

Search Result 198, Processing Time 0.023 seconds

Stereo Vision-based Visual Odometry Using Robust Visual Feature in Dynamic Environment (동적 환경에서 강인한 영상특징을 이용한 스테레오 비전 기반의 비주얼 오도메트리)

  • Jung, Sang-Jun;Song, Jae-Bok;Kang, Sin-Cheon
    • The Journal of Korea Robotics Society
    • /
    • v.3 no.4
    • /
    • pp.263-269
    • /
    • 2008
  • Visual odometry is a popular approach to estimating robot motion using a monocular or stereo camera. This paper proposes a novel visual odometry scheme using a stereo camera for robust estimation of a 6 DOF motion in the dynamic environment. The false results of feature matching and the uncertainty of depth information provided by the camera can generate the outliers which deteriorate the estimation. The outliers are removed by analyzing the magnitude histogram of the motion vector of the corresponding features and the RANSAC algorithm. The features extracted from a dynamic object such as a human also makes the motion estimation inaccurate. To eliminate the effect of a dynamic object, several candidates of dynamic objects are generated by clustering the 3D position of features and each candidate is checked based on the standard deviation of features on whether it is a real dynamic object or not. The accuracy and practicality of the proposed scheme are verified by several experiments and comparisons with both IMU and wheel-based odometry. It is shown that the proposed scheme works well when wheel slip occurs or dynamic objects exist.

  • PDF

A study on the possibility of recycling waste clothes using a virtual closet app (가상 옷장 앱을 이용한 폐의류 재활용 가능성에 관한 연구)

  • Eun-Bin Yu;Hyun-Joo Jo;Byung-In Choi;Dongok Kim
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2023.11a
    • /
    • pp.876-877
    • /
    • 2023
  • 3D 기술과 인공지능을 활용한 가상 옷장 앱 BBoM은 패스트패션의 환경 오염을 줄이고 지속 가능한 소비문화를 조성한다. 깊이 추정(depth estimation) 기술을 활용하여 2D 이미지를 3D 모델로 변환하였다. 이러한 기능은 소비자들의 소비 패턴에 도움을 줄 뿐만 아니라 1년 후에 연간탄소 배출량을 37% 감소시킬 수 있다.

Estimation of Equivalent Hydrodynamic Coefficients by Bean Permutation Technique (보치환법에 의한 등가 유체력계수 산정)

  • 박춘군
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.12 no.2
    • /
    • pp.81-86
    • /
    • 2000
  • For on-shore structures, dynamic analysis becomes increasingly important as the water depth increases and the structural configuration becoines slenderer. In this study, an estimation method for equivalent three dimensional (30) hydrodynamic coefficients is introduced as a part of beam permutation technique development. The beam pemlUtation technique is being developed for obtaining an equivalent beam to a frame structure in order to reduce the degrees of freedom and thus the analysis time significantly. Two 3D structures are used in order to verify the obtained equivalent 3D hydrodynamic coefficients. Two commercial softwares, ANSYS and SACS, are used for the verification. The results of the present analysis are found to be satisfactory in comparison with those by the two softwares.

  • PDF

Omni-directional Visual-LiDAR SLAM for Multi-Camera System (다중 카메라 시스템을 위한 전방위 Visual-LiDAR SLAM)

  • Javed, Zeeshan;Kim, Gon-Woo
    • The Journal of Korea Robotics Society
    • /
    • v.17 no.3
    • /
    • pp.353-358
    • /
    • 2022
  • Due to the limited field of view of the pinhole camera, there is a lack of stability and accuracy in camera pose estimation applications such as visual SLAM. Nowadays, multiple-camera setups and large field of cameras are used to solve such issues. However, a multiple-camera system increases the computation complexity of the algorithm. Therefore, in multiple camera-assisted visual simultaneous localization and mapping (vSLAM) the multi-view tracking algorithm is proposed that can be used to balance the budget of the features in tracking and local mapping. The proposed algorithm is based on PanoSLAM architecture with a panoramic camera model. To avoid the scale issue 3D LiDAR is fused with omnidirectional camera setup. The depth is directly estimated from 3D LiDAR and the remaining features are triangulated from pose information. To validate the method, we collected a dataset from the outdoor environment and performed extensive experiments. The accuracy was measured by the absolute trajectory error which shows comparable robustness in various environments.

An Objective No-Reference Perceptual Quality Assessment Metric based on Temporal Complexity and Disparity for Stereoscopic Video

  • Ha, Kwangsung;Bae, Sung-Ho;Kim, Munchurl
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.2 no.5
    • /
    • pp.255-265
    • /
    • 2013
  • 3DTV is expected to be a promising next-generation broadcasting service. On the other hand, the visual discomfort/fatigue problems caused by viewing 3D videos have become an important issue. This paper proposes a perceptual quality assessment metric for a stereoscopic video (SV-PQAM). To model the SV-PQAM, this paper presents the following features: temporal variance, disparity variation in intra-frames, disparity variation in inter-frames and disparity distribution of frame boundary areas, which affect the human perception of depth and visual discomfort for stereoscopic views. The four features were combined into the SV-PQAM, which then becomes a no-reference stereoscopic video quality perception model, as an objective quality assessment metric. The proposed SV-PQAM does not require a depth map but instead uses the disparity information by a simple estimation. The model parameters were estimated based on linear regression from the mean score opinion values obtained from the subjective perception quality assessments. The experimental results showed that the proposed SV-PQAM exhibits high consistency with subjective perception quality assessment results in terms of the Pearson correlation coefficient value of 0.808, and the prediction performance exhibited good consistency with a zero outlier ratio value.

  • PDF

Automated condition assessment of concrete bridges with digital imaging

  • Adhikari, Ram S.;Bagchi, Ashutosh;Moselhi, Osama
    • Smart Structures and Systems
    • /
    • v.13 no.6
    • /
    • pp.901-925
    • /
    • 2014
  • The reliability of a Bridge management System depends on the quality of visual inspection and the reliable estimation of bridge condition rating. However, the current practices of visual inspection have been identified with several limitations, such as: they are time-consuming, provide incomplete information, and their reliance on inspectors' experience. To overcome such limitations, this paper presents an approach of automating the prediction of condition rating for bridges based on digital image analysis. The proposed methodology encompasses image acquisition, development of 3D visualization model, image processing, and condition rating model. Under this method, scaling defect in concrete bridge components is considered as a candidate defect and the guidelines in the Ontario Structure Inspection Manual (OSIM) have been adopted for developing and testing the proposed method. The automated algorithms for scaling depth prediction and mapping of condition ratings are based on training of back propagation neural networks. The result of developed models showed better prediction capability of condition rating over the existing methods such as, Naïve Bayes Classifiers and Bagged Decision Tree.

A simplified framework for estimation of deformation pattern in deep excavations

  • Abdollah Tabaroei;Reza Jamshidi Chenari
    • Geomechanics and Engineering
    • /
    • v.37 no.1
    • /
    • pp.31-48
    • /
    • 2024
  • To stabilize the excavations in urban area, soil anchorage is among the very common methods in geotechnical engineering. A more efficient deformation analysis can potentially lead to cost-effective and safer designs. To this end, a total of 116 three-dimensional (3D) finite element (FE) models of a deep excavation supported by tie-back wall system were analyzed in this study. An initial validation was conducted through examination of the results against the Texas A&M excavation cases. After the validation step, an extensive parametric study was carried out to cover significant design parameters of tie-back wall system in deep excavations. The numerical results indicated that the maximum horizontal displacement values of the wall (δhm) and maximum surface settlement (δvm) increase by an increase in the value of ground anchors inclination relative to the horizon. Additionally, a change in the wall embedment depth was found to be contributing more to δvm than to δhm. Based on the 3D FE analysis results, two simple equations are proposed to estimate excavation deformations for different scenarios in which the geometric configuration parameters are taken into account. The model proposed in this study can help the engineers to have a better understanding of the behavior of such systems.

Estimation of Seawater Intrusion Range in the Daechang Area Using 3D-FEMWATER Model (3D-FEMWATER 모델을 이용한 대창지역의 해수침투 범위추정)

  • Kim Kyoung-Ho;Park Jae-Sung;Lee Ho-Jin;Youn Ju-Heum
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.47 no.5
    • /
    • pp.3-13
    • /
    • 2005
  • The present study examined the 3 dimensional space distribution characteristics of sea water intrusion using data available from previous observations. For this study, we used 3D FEMWATER, which is a 3 dimensional finite element model. The target area was around Daechang-ri, Gimje-si, Jeollabuk-do. The area is relatively easy to formulate a conceptual model and has observation wells in operation for surveying sea water intrusion. Considering the uncertainty of numerical simulation, we analyzed sensitivity to hydraulic conductivity, which has a relatively higher effect. According to the result of the analysis, the variation of TDS concentration had an error range of $-1,336{\~}+107 mg/{\iota}$. Taking note that the survey data from observation wells were collected when the boundary between fresh water and sea water in the aquifer was in equilibrium, we set the range of time for numerical simulation and estimated the spatial distribution of TDS concentration as the range of sea water intrusion. According to the result of estimation, the spatial distribution of TDS concentration calculated when 1,440 days were simulated was taken as the range of sea water intrusion. Using the result of calculation, we can draw not only vertical views for a certain section but also horizontal views of different depth. These views will be greatly helpful in understanding the spatial distribution of the range of sea water intrusion. In addition, the result of this study can be used rationally in proposing an optimal quantity of water pumping through investigating the moving route of sea water intrusion over time in order to prevent excessive water pumping and to maintain an optimal number of water pumping wells per interval.

A Study on the Application of ColMap in 3D Reconstruction for Cultural Heritage Restoration

  • Byong-Kwon Lee;Beom-jun Kim;Woo-Jong Yoo;Min Ahn;Soo-Jin Han
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.8
    • /
    • pp.95-101
    • /
    • 2023
  • Colmap is one of the innovative artificial intelligence technologies, highly effective as a tool in 3D reconstruction tasks. Moreover, it excels at constructing intricate 3D models by utilizing images and corresponding metadata. Colmap generates 3D models by merging 2D images, camera position data, depth information, and so on. Through this, it achieves detailed and precise 3D reconstructions, inclusive of objects from the real world. Additionally, Colmap provides rapid processing by leveraging GPUs, allowing for efficient operation even within large data sets. In this paper, we have presented a method of collecting 2D images of traditional Korean towers and reconstructing them into 3D models using Colmap. This study applied this technology in the restoration process of traditional stone towers in South Korea. As a result, we confirmed the potential applicability of Colmap in the field of cultural heritage restoration.

Nonlinearity effect on the dynamic behavior of the clayey basin edge

  • Hadi Khanbabazadeh
    • Geomechanics and Engineering
    • /
    • v.36 no.4
    • /
    • pp.367-380
    • /
    • 2024
  • Investigations has shown that the correct estimation of the effective amplification period is as important as the amplification value itself. It gets more important in 2D basins. This study presents a quantitative coefficient for consideration of the nonlinearity effect in terms of amplification value and the shift in its period which is missing or ineffectively considered in the previous studies. To attain this goal, by the application of a time domain fully nonlinear method, the deviation of the more common equivalent linear results from the basin nonlinear behavior under strong ground motions is investigated quantitatively. Also, despite the increase in the damping ratio, the possibility of the increase in the amplification due to the increase in motion strength is shown. To make the results useful in engineering practice, by introducing nonlinearity ratio, the effect of the nonlinearity is quantitatively estimated for two soft and stiff clayey basins with three different depths under a set of motions scaled to two target spectrum. Results show that at the 100 m depth soft clayey basin, while the nonlinearity ratio shows a 35% deviation at the basin edge part under DD1 motion level, its effect moves to the central part with 20% effect under DD3 motion level. By the increase in depth to 150 m, the results show a decrease in the overall effect of the nonlinear behavior for both clay types. At this depth, the nonlinearity ratio gives a 30% and 17% difference on a limited distance from outcrop at the soft clayey basin under DD1 and DD3 motion levels, respectively. At the 30 m depth basins, the nonlinearity ratio shows up to 25% difference for different cases. The presented ratio would be introduced as nonlinearity coefficients for consideration of the nonlinearity effects in the codes. The presented quantitative margins will help the designer to have a better understanding of the amplification period change because of nonlinearity over 2D basin surface.