• Title/Summary/Keyword: 3D Dental CT Image

Search Result 48, Processing Time 0.027 seconds

Comparison of personal computer with CT workstation in the evaluation of 3-dimensional CT image of the skull (전산화단층촬영 단말장치와 개인용 컴퓨터에서 재구성한 두부 3차원 전산화단층영상의 비교)

  • Kang Bok-Hee;Kim Kee-Deog;Park Chang-Seo
    • Imaging Science in Dentistry
    • /
    • v.31 no.1
    • /
    • pp.1-7
    • /
    • 2001
  • Purpose : To evaluate the usefulness of the reconstructed 3-dimensional image on the personal computer in comparison with that of the CT workstation by quantitative comparison and analysis. Materials and Methods : The spiral CT data obtained from 27 persons were transferred from the CT workstation to a personal computer, and they were reconstructed as 3-dimensional image on the personal computer using V-works 2.0/sup TM/. One observer obtained the 14 measurements on the reconstructed 3-dimensional image on both the CT workstation and the personal computer. Paired Nest was used to evaluate the intraobserver difference and the mean value of the each measurement on the CT workstation and the personal computer. Pearson correlation analysis and % incongruence were also performed. Results: I-Gn, N-Gn, N-A, N-Ns, B-A, and G-Op did not show any statistically significant difference (p>0.05), B-O, B-N, Eu-Eu, Zy-Zy, Biw, D-D, Orbrd R, and L had statistically significant difference (p<0.05), but the mean values of the differences of all measurements were below 2 mm, except for D-D. The value of correlation coefficient y was greater than 0.95 at I-Gn, N-Gn, N-A, N-Ns, B-A, B-N, G-Op, Eu-Eu, Zy-Zy, and Biw, and it was 0.75 at B-O, 0.78 at D-D, and 0.82 at both Orbrd Rand L. The % incongruence was below 4% at I-Gn, N-Gn, N-A, N-Ns, B-A, B-N, G-Op, Eu-Eu, Zy-Zy, and Biw, and 7.18%, 10.78%, 4.97%, 5.89% at B-O, D-D, Orbrd Rand L respectively. Conclusion : It can be considered that the utilization of the personal computer has great usefulness in reconstruction of the 3-dimensional image when it comes to the economics, accessibility and convenience, except for thin bones and the landmarks which are difficult to be located.

  • PDF

High-quality Stitching Method of 3D Multiple Dental CT Images (3차원 다중 치과 CT 영상의 고화질 스티칭 기법)

  • Park, Seyoon;Park, Seongjin;Lee, Jeongjin;Shin, Juneseuk;Shin, Yeong-Gil
    • Journal of Korea Multimedia Society
    • /
    • v.17 no.10
    • /
    • pp.1205-1212
    • /
    • 2014
  • In this paper, we propose a high-quality stitching method of 3D multiple dental CT images. First, a weighted function is generated using the difference of two distance functions that calculate a distance from the nearest edge of an overlapped region to each position. And a blending ratio propagation function for two gradient vectors is parameterized by the difference and magnitude of gradient vectors that is also applied by the weighted function. When the blending ratio is propagated, an improved region growing scheme is proposed to decide the next position and calculate the blending intensity. The proposed method produces a high-quality stitching image. Our method removes the seam artifact caused by the mean intensity difference between images and vignetting effect. And it removes double edges caused by local misalignment. Experimental results showed that the proposed method produced high-quality stitching images for ten patients. Our stitching method could be usefully applied into the stitching of 3D or 2D multiple images.

IMAGE FUSION ACCURACY FOR THE INTEGRATION OF DIGITAL DENTAL MODEL AND 3D CT IMAGES BY THE POINT-BASED SURFACE BEST FIT ALGORITHM (Point-based surface best fit 알고리즘을 이용한 디지털 치아 모형과 3차원 CT 영상의 중첩 정확도)

  • Kim, Bong-Chul;Lee, Chae-Eun;Park, Won-Se;Kang, Jeong-Wan;Yi, Choong-Kook;Lee, Sang-Hwy
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.34 no.5
    • /
    • pp.555-561
    • /
    • 2008
  • Purpose: The goal of this study was to develop a technique for creating a computerized composite maxillofacial-dental model, based on point-based surface best fit algorithm and to test its accuracy. The computerized composite maxillofacial-dental model was made by the three dimensional combination of a 3-dimensional (3D) computed tomography (CT) bone model with digital dental model. Materials and Methods: This integration procedure mainly consists of following steps : 1) a reconstruction of a virtual skull and digital dental model from CT and laser scanned dental model ; 2) an incorporation of dental model into virtual maxillofacial-dental model by point-based surface best fit algorithm; 3) an assessment of the accuracy of incorporation. To test this system, CTs and dental models from 3 volunteers with cranio-maxillofacial deformities were obtained. And the registration accuracy was determined by the root mean squared distance between the corresponding reference points in a set of 2 images. Results and Conclusions: Fusion error for the maxillofacial 3D CT model with the digital dental model ranged between 0.1 and 0.3 mm with mean of 0.2 mm. The range of errors were similar to those reported elsewhere with the fiducial markers. So this study confirmed the feasibility and accuracy of combining digital dental model and 3D CT maxillofacial model. And this technique seemed to be easier for us that its clinical applicability can good in the field of digital cranio-maxillofacial surgery.

Development of Dental Medical Image Processing SW using Open Source Library (오픈 소스를 이용한 치과 의료영상처리 SW 개발)

  • Jongjin, Park
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.23 no.1
    • /
    • pp.59-64
    • /
    • 2023
  • With the recent development of IT technology, medical image processing technology is also widely used in the dental field, and the treatment effect is enhanced by using 3D data such as CT. In this paper, open source libraries such as ITK and VTK are introduced to develop dental medical image processing software, and how to use them to develop dental medical image processing software centering on 3D CBCT. In ITK, basic algorithms for medical image processing are implemented, so the image processing pipeline can be quickly implemented, and the desired algorithm can be easily implemented as a filter by the developer. The developed algorithm is linked with VTK to implement the visualization function. The developed SW can be used for dental diagnosis and treatment that overcomes the limitations of 2D images..

자가 치아 이식술에 사용되는 Computer Aided Rapid Prototyping model(CARP model)의 실제 치아에 대한 오차

  • Lee, Seong-Jae;Kim, Ui-Seong;Kim, Gi-Deok;Lee, Seung-Jong
    • The Journal of the Korean dental association
    • /
    • v.44 no.2 s.441
    • /
    • pp.115-122
    • /
    • 2006
  • Objective : The purpose of this study was to evaluate the dimensional errors between real tooth, 3D CT image and CARP model. Materials and Methods : Two maxilla and two mandible block bones with intact teeth were taken from two cadavers. Computed tomography was taken either in dry state and in wet state. After then, all teeth were extracted and the dimensions of the real teeth were measured using a digital caliper at mesio-distal and bucco-lingual width both in crown and cervical portion. 3D CT image was generated using the V-works $4.0^{TM}$ (Cybemed Inc., Seoul, Korea) software. Twelve teeth were randomly selected for CARP model fabrication. All the measurements of 3D Ct images and CARP models were made in the same manner of the real tooth group. Dimensional errors between real tooth, 3D CT image model and CARP model was calculated. Results : 1) Average of absolute error was 0.199 mm between real teeth and 3D CT image model, 0.169 mm between 3D CT image model and CARP model and 0.291 mm between real teeth and CARP model, respectively. 2) Average size of 3D CT image was smaller than real teeth by 0.149 mm and that of CARP model was smalier than 3D CT image model by 0.067mm. Conclusion : Within the scope of this study, CARP model with the 0.291 mm average of absolute eror can aid to enhance the success rate cf autogenous tooth transplantation due to the increased accuracy of recipient bone and donor tooth.

  • PDF

Construction of 3D Geometric Surface Model from Laminated CT Images for the Pubis (치골 부위의 CT 적층 영상을 활용한 3D 기하학적 곡면 모델로의 가공)

  • Hwang, Ho-Jin;Mun, Du-Hwan;Hwang, Jin-Sang
    • Korean Journal of Computational Design and Engineering
    • /
    • v.15 no.3
    • /
    • pp.234-242
    • /
    • 2010
  • 3D CAD technology has been extended to a medical area including dental clinic beyond industrial design. The 2D images obtained by CT(Computerized Tomography) and MRI(Magnetic Resonance Imaging) are not intuitive, and thus the volume rendering technique, which transforms 2D data into 3D anatomic information, has been in practical use. This paper has focused on a method and its implementation for forming 3D geometric surface model from laminated CT images of the pubis. The implemented system could support a dental clinic to observe and examine the status of a patient's pubis before implant surgery. The supplement of 3D implant model would help dental surgeons settle operation plans more safely and confidently. It also would be utilized with teaching materials for a practice and training.

Evaluation of accuracy of 3D reconstruction images using multi-detector CT and cone-beam CT

  • Kim, Mi-Ja;Huh, Kyung-Hoe;YI, Won-Jin;Heo, Min-Suk;Lee, Sam-Sun;Choi, Soon-Chul
    • Imaging Science in Dentistry
    • /
    • v.42 no.1
    • /
    • pp.25-33
    • /
    • 2012
  • Purpose : This study was performed to determine the accuracy of linear measurements on three-dimensional (3D) images using multi-detector computed tomography (MDCT) and cone-beam computed tomography (CBCT). Materials and Methods : MDCT and CBCT were performed using 24 dry skulls. Twenty-one measurements were taken on the dry skulls using digital caliper. Both types of CT data were imported into OnDemand software and identification of landmarks on the 3D surface rendering images and calculation of linear measurements were performed. Reproducibility of the measurements was assessed using repeated measures ANOVA and ICC, and the measurements were statistically compared using a Student t-test. Results : All assessments under the direct measurement and image-based measurements on the 3D CT surface rendering images using MDCT and CBCT showed no statistically difference under the ICC examination. The measurements showed no differences between the direct measurements of dry skull and the image-based measurements on the 3D CT surface rendering images (P>.05). Conclusion : Three-dimensional reconstructed surface rendering images using MDCT and CBCT would be appropriate for 3D measurements.

Influence of slice thickness of computed tomography and type of rapid protyping on the accuracy of 3-dimensional medical model (CT절편두께와 RP방식이 3차원 의학모델 정확도에 미치는 영향에 대한 연구)

  • Um Ki-Doo;Lee Byung-Do
    • Imaging Science in Dentistry
    • /
    • v.34 no.1
    • /
    • pp.13-18
    • /
    • 2004
  • Purpose : This study was to evaluate the influence of slice thickness of computed tomography (CT) and rapid protyping (RP) type on the accuracy of 3-dimensional medical model. Materials and Methods: Transaxial CT data of human dry skull were taken from multi-detector spiral CT. Slice thickness were 1, 2, 3 and 4 mm respectively. Three-dimensional image model reconstruction using 3-D visualization medical software (V-works /sup TM/ 3.0) and RP model fabrications were followed. 2-RP models were 3D printing (Z402, Z Corp., Burlington, USA) and Stereolithographic Apparatus model. Linear measurements of anatomical landmarks on dry skull, 3-D image model, and 2-RP models were done and compared according to slice thickness and RP model type. Results: There were relative error percentage in absolute value of 0.97, 1.98,3.83 between linear measurements of dry skull and image models of 1, 2, 3 mm slice thickness respectively. There was relative error percentage in absolute value of 0.79 between linear measurements of dry skull and SLA model. There was relative error difference in absolute value of 2.52 between linear measurements of dry skull and 3D printing model. Conclusion: These results indicated that 3-dimensional image model of thin slice thickness and stereolithographic RP model showed relative high accuracy.

  • PDF

SEGMENTATION AND EXTRACTION OF TEETH FROM 3D CT IMAGES

  • Aizawa, Mitsuhiro;Sasaki, Keita;Kobayashi, Norio;Yama, Mitsuru;Kakizawa, Takashi;Nishikawa, Keiichi;Sano, Tsukasa;Murakami, Shinichi
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2009.01a
    • /
    • pp.562-565
    • /
    • 2009
  • This paper describes an automatic 3-dimensional (3D) segmentation method for 3D CT (Computed Tomography) images using region growing (RG) and edge detection techniques. Specifically, an augmented RG method in which the contours of regions are extracted by a 3D digital edge detection filter is presented. The feature of this method is the capability of preventing the leakage of regions which is a defect of conventional RG method. Experimental results applied to the extraction of teeth from 3D CT data of jaw bones show that teeth are correctly extracted by the proposed method.

  • PDF

Comparison of the observer reliability of cranial anatomic landmarks based on cephalometric radiograph and three-dimensional computed tomography scans (삼차원 전산화단층촬영사진과 측모두부 방사선규격사진의 계측자에 따른 계측오차에 대한 비교분석)

  • Kim, Jae-Young;Lee, Dong-Keun;Lee, Sang-Han
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.36 no.4
    • /
    • pp.262-269
    • /
    • 2010
  • Introduction: Accurate diagnosis and treatment planning are very important for orthognathic surgery. A small error in diagnosis can cause postoperative functional and esthetic problems. Pre-existing 2-dimensional (D) chephalogram analysis has a high likelihood of error due to its intrinsic and extrinsic problems. A cephalogram can also be inaccurate due to the limited anatomic points, superimposition of the image, and the considerable time and effort required. Recently, an improvement in technology and popularization of computed tomography (CT) provides patients with 3-D computer based cephalometric analysis, which complements traditional analysis in many ways. However, the results are affected by the experience and the subject of the investigator. Materials and Methods: The effects of the sources human error in 2-D cephalogram analysis and 3-D computerized tomography cephalometric analysis were compared using Simplant CMF program. From 2008 Jan to 2009 June, patients who had undergone CT, cephalo AP, lat were investigated. Results: 1. In the 3 D and 2 D images, 10 out of 93 variables (10.4%) and 11 out 44 variables (25%), respectively, showed a significant difference. 2. Landmarks that showed a significant difference in the 2 D image were the points frequently superimposed anatomically. 3. Go Po Orb landmarks, which showed a significant difference in the 3 D images, were found to be the artificial points for analysis in the 2 D image, and in the current definition, these points cannot be used for reproducibility in the 3 D image. Conclusion: Generally, 3-D CT images provide more precise identification of the traditional cephalometric landmark. Greater variability of certain landmarks in the mediolateral direction is probably related to the inadequate definition of the landmarks in the third dimension.