• Title/Summary/Keyword: 3D Deformation

Search Result 1,187, Processing Time 0.027 seconds

Thermo-Mechanical Analysis of Though-silicon-via in 3D Packaging (Though-silicon-via를 사용한 3차원 적층 반도체 패키징에서의 열응력에 관한 연구)

  • Hwang, Sung-Hwan;Kim, Byoung-Joon;Jung, Sung-Yup;Lee, Ho-Young;Joo, Young-Chang
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.17 no.1
    • /
    • pp.69-73
    • /
    • 2010
  • Finite-element analyses were conducted to investigate the thermal stress in 3-dimensional stacked wafers package containing through-silicon-via (TSV), which is being widely used for 3-Dimensional integration. With finite element method (FEM), thermal stress was analyzed with the variation of TSV diameter, bonding diameter, pitch and TSV height. It was revealed that the maximum von Mises stresses occurred at the edge of top interface between Cu TSV and Si and the Si to Si bonding site. As TSV diameter increased, the von Mises stress at the edge of TSV increased. As bonding diameter increased, the von Mises stress at Si to Si bonding site increased. As pitch increased, the von Mises stress at Si to Si bonding site increased. The TSV height did not affect the von Mises stress. Therefore, it is expected that smaller Cu TSV diameter and pitch will ensure mechanical reliability because of the smaller chance of plastic deformation and crack initiation.

Stratigraphy and Provenance of Non-marine Sediments in the Tertiary Cheju Basin (제주분지 제삼기 육성층의 층서 및 퇴적물 기원)

  • Kwon Young-In;Park Kwan-Soon;Yu Kang-Min;Son Jin-Dam
    • The Korean Journal of Petroleum Geology
    • /
    • v.3 no.1 s.4
    • /
    • pp.1-15
    • /
    • 1995
  • Seismic reflection profiles and exploratory drilling well samples from the southern marginal-continental shelf basin of Korea delineate that the Tertiary sedimentary sequences can be grouped into five sequences (Sequence A, Sequence B, Sequence C, Sequence D and Sequence E, in descending order). Paleontologic data, K-Ar age datings, correlation with tuff layers and sequence stratigraphic analysis reveal that the sequences A, B, C, D and E can be considered as the deposits of Holocene $\~$ Pleistocene, Pliocene, Late Miocene, Early $\~$ Middle Miocene and Oligocene, respectively. The sequence stratigraphic and structural analyses suggest that the southern part of the Cheju Basin had experienced severe folding and faulting. NE-SW trending strike-slip movement is responsible for the deformation. The sinistral movement of strike-slip fault ceased before the deposition of Sequence B. Age dating and rare-earth elements analysis of volvanic rocks reveal+ that the Sequence D was deposited during the Early $\~$ Middle Miocene and the Sequence I was deposited earlier than the deposition of the Green Tuff Formation. Sedimentary petrological studies indicate that sediments of the Sequence I came from the continental block provenance. After the deposition of the Sequence E, uplift of the source area resulted in increase of sediment supply, subsidence and volcanic activities. The Sequence D show these factors and the sediments of the Sequence D are considered to be transported from the recycled orogenic belt.

  • PDF

Effect of Plant Growth Regulator Treatments on the Growth and Lateral Root Formation in Soybean Sprouts - I. Effect of Plant Growth Regulator Treatments on the Growth in Soybean Sprouts (생장조절물질(生長調節物質) 처리(處理)가 콩나물의 생육(生育) 및 세근발생(細根發生)에 미치는 영향(影響) - I. 생장조절물질(生長調節物質)의 단용(單用) 및 혼용처리(混用處理)가 콩나물의 생육(生育)에 미치는 효과(效果))

  • Kang, C.K.;Lee, J.M.;Saka, H.
    • Korean Journal of Weed Science
    • /
    • v.9 no.1
    • /
    • pp.56-68
    • /
    • 1989
  • aA series of experiments were conducted to investigate the effect of plant growth regulator treatments on the growth and lateral root formation in soybean sprouts in order to establish the effective method of producing root-less or short-rooted soybean sprouts with larger diameter in the hypocotyl. Major results can be summarized as follows. 1. Soybean sprouts showed fairly uniform elongation rate from 3 to g days after imbibition with daily increase of 3.8cm. The speed of elongation of hypocotyl was reduced whereas that of root accelerated 7 days after imbibition. Lateral roots began to emerge fairly evenly from 5 to 9 days after imbibition with a daily increase of 4.4. 2. Auxins(IAA, IBA, NAA, 2,4-D) inhibited hypocotyl elongation and formation of lateral roots and increased hypocotyl diameter without influencing root length and hook diameter at higher concentrations. The dry weight of cotyledon was increased significantly as compared to that of hypocotyl and root. Among the tested auxins, 2, 4-D was the most effective. 3. BA and 4PU-30 significantly reduced elongation of hypocotyl and root and resulted in the biggest diameter of hypocotyl when treated at higher concentrations. The lowest effective concentration of BA to prevent the formation of larval gal roots was 12.5ppm. The formation of lateral roots could be completely prevented by BA and 4PU-30 treatment but kinetin, zeatin, zeatin riboside resulted in many lateral roots and increased thickness of soybean sprouts with little influence. Cotyledon deformation was found in soybean sprouts treated by 4PU-30. 4. 2, 4-D was the most effective for increasing the hypocotyl diameter while 4PU-30 was the most effective for reducing no. of lateral roots. 5. It can be concluded that among the plant growth regulators tested, BA was effective in reducing root length and increasing hypocotyl diameter. BA 12.5 ppm or 15 ppm may thus be the more practical for production of soybean sprouts. 6. ABA showed no significant effect of growth parameter, however ABA 25 ppm inhibited only no of lateral roots with little influence on the growth of seedling. 7. Ethephon inhibited the elongation of hypocotyl and root and increased hypocotyl diameter at higher concentrations. 8. The combined effect of cytokinins and ethephon was very similar to result of BA treatment alone. As the ethephon concentration increased, hypocotyl diameter and dry weight of cotyledon tended to increase.

  • PDF

Carbon-induced reconstructions on W(110)

  • Kim, Ji-Hyeon;Rojas, Geoff;Anders, Axel;Kim, Jae-Seong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.362-362
    • /
    • 2010
  • Today, vast attention has been paid to periodic arrays of nanostructures due to their potential for applications such as memory with huge storage density. Such application requires large-scale fabrication of well ordered nano-sized structures. One of the most widely used methods for the ordered nanostructures is lithography. This top-down process, however, has the limit to reduce size. Here the promising alternative is the self-organization of ordered nano-sized structures such as large scale 2d carbon-induced reconstructions on W(110). In the present study, we report on the first well-resolved atomic resolution STM studies of the well-known R($15{\times}3$) and R($15{\times}12$) carbon induced reconstruction of the W(110). From the atomic image of R($15{\times}3$) for different values of tunneling gap resistance, we can tell there are no missing atoms in unit cells of R($15{\times}3$) and some atomic displacements are substantial from the clean W(110), even though not all the imaged position of atoms correspond to tungsten, but may include those of carbon. We are considering two cases; First case is related to lattice deformation, or top layer of W(110) is deformed in the process of relief of strain caused by random inserting of carbon atoms possibly in the interstitial position. In the second case, R($15{\times}3$) unit cell results from a coincidence lattice between clean W(110) substrate and tungsten carbide overlayer which has rectangular atomic arrangement and giving R($15{\times}3$) coincidence lattice. beta-W2C showing rectangular unit cell should be a candidate. Further, we report on new reconstructions. Unlike the well-known R($15{\times}12$) consisting of two parts, two inner structures between two "Backbone" structures. The new reconstruction, which we found for the first time, contains more parts between the "Backbone"s. Sometimes we can observe the reconstruction consists of only inner parts without "Backbone" parts. Thus, the observed reconstruction can be built by constructing of two types of "Lego"-like block. Moreover, the rectangle shape of "Backbone" transform to parallelogram-like shape over time, the so-called wavy-R($15{\times}12$). Adsorption of hydrogen can be the reason for this transformation.

  • PDF

Effects of types of bridge decks on competitive relationships between aerostatic and flutter stability for a super long cable-stayed bridge

  • Hu, Chuanxin;Zhou, Zhiyong;Jiang, Baosong
    • Wind and Structures
    • /
    • v.28 no.4
    • /
    • pp.255-270
    • /
    • 2019
  • Aerodynamic configurations of bridge decks have significant effects on the aerostatic torsional divergence and flutter forsuper long-span bridges, which are onset for selection of suitable bridge decksfor those bridges. Based on a cable-stayed bridge with double main spans of 1500 m, considering typical twin-box, stiffening truss and closed-box section, which are the most commonly used form of bridge decks and assumed that the rigidity of those section is completely equivalent, are utilized to investigate the effects of aerodynamic configurations of bridge decks on aerodynamic instability performance comprised of the aerostatic torsional divergence and flutter, by means of wind tunnel tests and numerical calculations, including three-dimensional (3D) multimode flutter analysis and nonlinear aerostatic analysis. Regarding the aerostatic torsional divergence, the results obtained in this study show twin-box section is the best, closed-box section the second-best, and the stiffening truss section the worst. Regarding the flutter, the flutter stability of the twin-box section is far better than that of the stiffening truss and closed-box section. Furthermore, wind-resistance design depends on the torsional divergence for the twin-box and stiffening truss section. However, there are obvious competitive relationships between the aerostatic torsional divergence and flutter for the closed-box section. Flutter occur before aerostatic instability at initial attack angle of $+3^{\circ}$ and $0^{\circ}$, while the aerostatic torsional divergence occur before flutter at initial attack angle of $-3^{\circ}$. The twin-box section is the best in terms of both aerostatic and flutter stability among those bridge decks. Then mechanisms of aerostatic torsional divergence are revealed by tracking the cable forces synchronous with deformation of the bridge decksin the instability process. It was also found that the onset wind velocities of these bridge decks are very similar at attack angle of $-3^{\circ}$. This indicatesthat a stable triangular structure made up of the cable planes, the tower, and the bridge deck greatly improves the aerostatic stability of the structure, while the aerodynamic effects associated with the aerodynamic configurations of the bridge decks have little effects on the aerostatic stability at initial attack angle of $-3^{\circ}$. In addition, instability patterns of the bridge depend on both the initial attack angles and aerodynamic configurations of the bridge decks. This study is helpful in determining bridge decksfor super long-span bridges in future.

Deformation Characteristics of Zircaloy-4 Fuel Cladding due to Oxidation in Environment of High Temperature and Steam (고온, 수증기 속에서 산화된 질칼로이-4 핵연료 피복관의 변형 특성에 관한 연구)

  • Jung, Sung-Hoon;Suh, Kyung-Soo;Kim, In-Sup
    • Nuclear Engineering and Technology
    • /
    • v.18 no.3
    • /
    • pp.218-227
    • /
    • 1986
  • Studies were conducted to determine the extent of oxidation and same of the mechanical property changes of Zircaloy-4 fuel cladding after it was exposed to hot steam environment. The purpose of these tests was to provide some informations on the embrittlement behavior of CANDU type fuel cladding, which could be experienced under the loss-of-coolant accident conditions. The Zircaloy fuel cladding tubes were exposed in a steam environment at the temperature of 90$0^{\circ}C$, 1,00$0^{\circ}C$. The growth of the ZrO$_2$ layer combined with an oxygen rich $\alpha$-phase layer into the Zircaloy tube material was found as a function of time t and temperature of steam exposure, E=1.1√Dt+0.002 where D is a temperature dependent diffusion coefficient. The tensile strength of the specimens exposed for a short period increased but decreased continuously with further exposure. The circumferential elongation was drastically changed with the exposure time while the hoop strength did't decrease greatly. The X-ray measurement of preferred orientation of the Zircaloy tube material indicated that grains in the as received tube were oriented such that the poles of the basal (0001) planes were predominantly radial, while the poles of the basal plane in the tube materials heattreated at 1,00$0^{\circ}C$ were oriented tangentially. It appears that this reoriented texture may contribute to lessening the decrease of the hoop strength of the heat treated Zircaloy tube material.

  • PDF

A Study on the Behavior of Blasting Demolition for a Reinforced Concrete Structure Using Sealed Model Test and Particle Flow Analysis (축소모형실험과 입자결합모델 해석을 통한 철근 콘크리트 구조물의 발파해체 거동에 관한 비교 분석)

  • 채희문;전석원
    • Explosives and Blasting
    • /
    • v.22 no.1
    • /
    • pp.33-43
    • /
    • 2004
  • In this study, a comparison was made between the resulting behaviors of scaled model test and particle flow analysis for blasting demolition of a reinforced concrete structure. For the test and analysis, a progressive failure of a five-story structure was considered. The dimension analysis was carried out to properly scale down the real structure into the laboratory size. The test model was made of the mixture of gypsum, sand and water along with soldering lead to analogy reinforcing steel bars. The ratio of mixing components was chosen to best represent the scaled down strength and deformation modulus. The columns and girders of the structure were precasted in the laboratory and assembled right before the blasting test. The numerical analysis of the blasting demolition was carried out using PFC2D (Particle Flow Analysis 2-Dimension by Itasca). The results of the blasting of concrete lahmen structure showed roughly identical demolition behavior between scaled model test and numerical test. For the blasting of the reinforced concrete structure, the results were more identical and closer to the real demolition behavior, since the demolition behavior was better represented in this case due to the increased tensile strength of the component.

State-based Peridynamic Modeling for Dynamic Fracture of Plane Stress (평면응력 문제의 상태 기반 페리다이나믹 동적파괴 해석 모델링)

  • Ha, Youn Doh
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.28 no.3
    • /
    • pp.301-307
    • /
    • 2015
  • A bond-based peridynamic model has been shown to be capable of analyzing many of dynamic brittle fracture phenomena. However, there have been issued limitations on handling constitutive models of various materials. Especially, it assumes bonds act independently of each other, so that Poisson's ratio for 3D model is fixed as 1/4 as well as taking only account the bond stretching results in a volume change not a shear change. In this paper a state-based peridynamic model of dynamic brittle fracture is presented. The state-based peridynamic model is a generalized peridynamic model that is able to directly use a constitutive model from the standard theory. It permits the response of a material at a point to depend collectively on the deformation of all bonds connected to the point. Thus, the volume and shear changes of the material can be reproduced by the state-based peridynamic theory. For a linearly elastic solid, a plane stress model is introduced and the damage model suitable for the state-based peridynamic model is discussed. Through a convergence study under decreasing the peridynamic nonlocal region($\delta$-convergence), the dynamic fracture model is verified. It is also shown that the state-based peridynamic model is reliable for modeling dynamic crack propagatoin.

Experimental and Numerical Studies on Application of Industrial Explosives to Explosive Welding, Explosive Forming, Shock Powder Consolidation (산업용 폭약을 이용한 폭발용접, 폭발성형과 충격분말고화에 관한 실험 및 수치해석적 연구)

  • Kim, Young-Kook;Kang, Seong-Seung;Cho, Sang-Ho
    • Tunnel and Underground Space
    • /
    • v.22 no.1
    • /
    • pp.69-76
    • /
    • 2012
  • Theoretical backgrounds on the experimental methods of explosive welding, explosive forming and shock consolidation of powders are introduced. Explosive welding experiments of titanium (Ti) and stainless steel (SUS 304) plate were carried out. It was revealed that a series of waves of metal jet are generated in the contact surface between both materials; and that the optimal collision velocity and collision angle is about 2,100~2,800 m/s and $15{\sim}20^{\circ}$, respectively. Also, explosive forming experiments of Al plate were performed and compared to a conventional press forming method. The results confirmed that the shock-loaded Al plate has a larger curvature deformation than those made using conventional press forming. For shock consolidation of powders, the propagation behaviors of a detonation wave and underwater shock wave generated by explosion of an explosive are investigated by means of numerical calculation. The results revealed that the generation and convergence of reflected waves occur at the wall and center position of water column, and also the peak pressure of the converged reflected waves was 20 GPa which exceeds the detonation pressure. As results from the consolidation experiments of metal/ceramic powders ($Fe_{11.2}La_2O_3Co_{0.7}Si_{1.1}$), shock-consolidated $Fe_{11.2}La_2O_3Co_{0.7}Si_{1.1}$ bulk without cracks was successfully obtained by adapting the suggested water container and strong bonding between powder particles was confirmed through microscopic observations.

MAXILLARY FLOATING TEETH IN A CHIARI MALFORMATION PATIENT (Chiari malformation 환아에서 상악 구치부의 부유치)

  • Shin, Eun-Young;Choi, Byung-Jai;Lee, Jae-Ho;Son, Heung-Kyu
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.28 no.4
    • /
    • pp.649-653
    • /
    • 2001
  • The Chiari malformation is a deformation within the central nervous system which the lower brain stem and the cerebellum migrate into the foramen magnum causing herniation. In 1891, Arnold Chiari classified such symptoms into 3 categories. This case report is of a 8-year-old female with the complaint of a slight facial swelling and pain on the upper right molar during tooth brushing since 10 days before. Clinical examination showed gingival pocket formation on distal of the upper right first molar with pain and mobility of the tooth. Radiographic examination showed generalized low bone density in the upper molar area, and especially no bone support above the upper right and left first molars were noted. With a temporary diagnosis of Early-onset periodontitis, consultations with medical doctors for the possibility of an underlying systemic disease were made during periodontal treatment. 3D CT was taken with after a final diagnosis of Chiari malformation. Generalized thinning and defect of the cranial bone was noted and the foramen magnum was slightly enlarged. The occipital and maxillary bone was low in density, and the alveolar bone of maxillary posterior teeth was especially almost non-existing causing the upper right and left first molar to be floating. For this, the patient went under consultation with the department of neurosurgery and is still under observation. Periodontitis in childreren is very rare. When symptoms of periodontitis appear in a child, due to the possibility of an underlying systemic disease such as leukemia, histiocytosis X, and hypophosphatasia, proper examinations should be carried out so that the primary factor the symptoms can be treated.

  • PDF