• Title/Summary/Keyword: 3D Data Fusion

Search Result 137, Processing Time 0.025 seconds

Motion Estimation of 3D Planar Objects using Multi-Sensor Data Fusion (센서 융합을 이용한 움직이는 물체의 동작예측에 관한 연구)

  • Yang, Woo-Suk
    • Journal of Sensor Science and Technology
    • /
    • v.5 no.4
    • /
    • pp.57-70
    • /
    • 1996
  • Motion can be estimated continuously from each sensor through the analysis of the instantaneous states of an object. This paper is aimed to introduce a method to estimate the general 3D motion of a planar object from the instantaneous states of an object using multi-sensor data fusion. The instantaneous states of an object is estimated using the linear feedback estimation algorithm. The motion estimated from each sensor is fused to provide more accurate and reliable information about the motion of an unknown planar object. We present a fusion algorithm which combines averaging and deciding. With the assumption that the motion is smooth, the approach can handle the data sequences from multiple sensors with different sampling times. Simulation results show proposed algorithm is advantageous in terms of accuracy, speed, and versatility.

  • PDF

Refinements of Multi-sensor based 3D Reconstruction using a Multi-sensor Fusion Disparity Map (다중센서 융합 상이 지도를 통한 다중센서 기반 3차원 복원 결과 개선)

  • Kim, Si-Jong;An, Kwang-Ho;Sung, Chang-Hun;Chung, Myung-Jin
    • The Journal of Korea Robotics Society
    • /
    • v.4 no.4
    • /
    • pp.298-304
    • /
    • 2009
  • This paper describes an algorithm that improves 3D reconstruction result using a multi-sensor fusion disparity map. We can project LRF (Laser Range Finder) 3D points onto image pixel coordinatesusing extrinsic calibration matrixes of a camera-LRF (${\Phi}$, ${\Delta}$) and a camera calibration matrix (K). The LRF disparity map can be generated by interpolating projected LRF points. In the stereo reconstruction, we can compensate invalid points caused by repeated pattern and textureless region using the LRF disparity map. The result disparity map of compensation process is the multi-sensor fusion disparity map. We can refine the multi-sensor 3D reconstruction based on stereo vision and LRF using the multi-sensor fusion disparity map. The refinement algorithm of multi-sensor based 3D reconstruction is specified in four subsections dealing with virtual LRF stereo image generation, LRF disparity map generation, multi-sensor fusion disparity map generation, and 3D reconstruction process. It has been tested by synchronized stereo image pair and LRF 3D scan data.

  • PDF

Fusion of LIDAR Data and Aerial Images for Building Reconstruction

  • Chen, Liang-Chien;Lai, Yen-Chung;Rau, Jiann-Yeou
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.773-775
    • /
    • 2003
  • From the view point of data fusion, we integrate LIDAR data and digital aerial images to perform 3D building modeling in this study. The proposed scheme comprises two major parts: (1) building block extraction and (2) building model reconstruction. In the first step, height differences are analyzed to detect the above ground areas. Color analysis is then performed for the exclusion of tree areas. Potential building blocks are selected first followed by the refinement of building areas. In the second step, through edge detection and extracting the height information from LIDAR data, accurate 3D edges in object space is calculated. The accurate 3D edges are combined with the already developed SMS method for building modeling. LIDAR data acquired by Leica ALS 40 in Hsin-Chu Science-based Industrial Park of north Taiwan will be used in the test.

  • PDF

Efficient Digitizing in Reverse Engineering By Sensor Fusion (역공학에서 센서융합에 의한 효율적인 데이터 획득)

  • Park, Young-Kun;Ko, Tae-Jo;Kim, Hrr-Sool
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.9
    • /
    • pp.61-70
    • /
    • 2001
  • This paper introduces a new digitization method with sensor fusion for shape measurement in reverse engineering. Digitization can be classified into contact and non-contact type according to the measurement devices. Important thing in digitization is speed and accuracy. The former is excellent in speed and the latter is good for accuracy. Sensor fusion in digitization intends to incorporate the merits of both types so that the system can be automatized. Firstly, non-contact sensor with vision system acquires coarse 3D point data rapidly. This process is needed to identify and loco]ice the object located at unknown position on the table. Secondly, accurate 3D point data can be automatically obtained using scanning probe based on the previously measured coarse 3D point data. In the research, a great number of measuring points of equi-distance were instructed along the line acquired by the vision system. Finally, the digitized 3D point data are approximated to the rational B-spline surface equation, and the free-formed surface information can be transferred to a commercial CAD/CAM system via IGES translation in order to machine the modeled geometric shape.

  • PDF

Analysis of the Increase of Matching Points for Accuracy Improvement in 3D Reconstruction Using Stereo CCTV Image Data

  • Moon, Kwang-il;Pyeon, MuWook;Eo, YangDam;Kim, JongHwa;Moon, Sujung
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.35 no.2
    • /
    • pp.75-80
    • /
    • 2017
  • Recently, there has been growing interest in spatial data that combines information and communication technology with smart cities. The high-precision LiDAR (Light Dectection and Ranging) equipment is mainly used to collect three-dimensional spatial data, and the acquired data is also used to model geographic features and to manage plant construction and cultural heritages which require precision. The LiDAR equipment can collect precise data, but also has limitations because they are expensive and take long time to collect data. On the other hand, in the field of computer vision, research is being conducted on the methods of acquiring image data and performing 3D reconstruction based on image data without expensive equipment. Thus, precise 3D spatial data can be constructed efficiently by collecting and processing image data using CCTVs which are installed as infrastructure facilities in smart cities. However, this method can have an accuracy problem compared to the existing equipment. In this study, experiments were conducted and the results were analyzed to increase the number of extracted matching points by applying the feature-based method and the area-based method in order to improve the precision of 3D spatial data built with image data acquired from stereo CCTVs. For techniques to extract matching points, SIFT algorithm and PATCH algorithm were used. If precise 3D reconstruction is possible using the image data from stereo CCTVs, it will be possible to collect 3D spatial data with low-cost equipment and to collect and build data in real time because image data can be easily acquired through the Web from smart-phones and drones.

Developing Data Fusion Method for Indoor Space Modeling based on IndoorGML Core Module

  • Lee, Jiyeong;Kang, Hye Young;Kim, Yun Ji
    • Spatial Information Research
    • /
    • v.22 no.2
    • /
    • pp.31-44
    • /
    • 2014
  • According to the purpose of applications, the application program will utilize the most suitable data model and 3D modeling data would be generated based on the selected data model. In these reasons, there are various data sets to represent the same geographical features. The duplicated data sets bring serious problems in system interoperability and data compatibility issues, as well in finance issues of geo-spatial information industries. In order to overcome the problems, this study proposes a spatial data fusion method using topological relationships among spatial objects in the feature classes, called Topological Relation Model (TRM). The TRM is a spatial data fusion method implemented in application-level, which means that the geometric data generated by two different data models are used directly without any data exchange or conversion processes in an application system to provide indoor LBSs. The topological relationships are defined and described by the basic concepts of IndoorGML. After describing the concepts of TRM, experimental implementations of the proposed data fusion method in 3D GIS are presented. In the final section, the limitations of this study and further research are summarized.

3D motion estimation using multisensor data fusion (센서융합을 이용한 3차원 물체의 동작 예측)

  • 양우석;장종환
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10a
    • /
    • pp.679-684
    • /
    • 1993
  • This article presents an approach to estimate the general 3D motion of a polyhedral object using multiple, sensory data some of which may not provide sufficient information for the estimation of object motion. Motion can be estimated continuously from each sensor through the analysis of the instantaneous state of an object. We have introduced a method based on Moore-Penrose pseudo-inverse theory to estimate the instantaneous state of an object. A linear feedback estimation algorithm is discussed to estimate the object 3D motion. Then, the motion estimated from each sensor is fused to provide more accurate and reliable information about the motion of an unknown object. The techniques of multisensor data fusion can be categorized into three methods: averaging, decision, and guiding. We present a fusion algorithm which combines averaging and decision.

  • PDF

the fusion of LiDAR Data and high resolution Image for the Precise Monitoring in Urban Areas (도심의 정밀 모니터링을 위한 LiDAR 자료와 고해상영상의 융합)

  • 강준묵;강영미;이형석
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2004.04a
    • /
    • pp.383-388
    • /
    • 2004
  • The fusion of a different kind sensor is fusion of the obtained data by the respective independent technology. This is a important technology for the construction of 3D spatial information. particularly, information is variously realized by the fusion of LiDAR and mobile scanning system and digital map, fusion of LiDAR data and high resolution, LiDAR etc. This study is to generate union DEM and digital ortho image by the fusion of LiDAR data and high resolution image and monitor precisely topology, building, trees etc in urban areas using the union DEM and digital ortho image. using only the LiDAR data has some problems because it needs manual linearization and subjective reconstruction.

  • PDF

Dual-Stream Fusion and Graph Convolutional Network for Skeleton-Based Action Recognition

  • Hu, Zeyuan;Feng, Yiran;Lee, Eung-Joo
    • Journal of Korea Multimedia Society
    • /
    • v.24 no.3
    • /
    • pp.423-430
    • /
    • 2021
  • Aiming Graph convolutional networks (GCNs) have achieved outstanding performances on skeleton-based action recognition. However, several problems remain in existing GCN-based methods, and the problem of low recognition rate caused by single input data information has not been effectively solved. In this article, we propose a Dual-stream fusion method that combines video data and skeleton data. The two networks respectively identify skeleton data and video data and fuse the probabilities of the two outputs to achieve the effect of information fusion. Experiments on two large dataset, Kinetics and NTU-RGBC+D Human Action Dataset, illustrate that our proposed method achieves state-of-the-art. Compared with the traditional method, the recognition accuracy is improved better.

Reconstruction of Buildings from Satellite Image and LIDAR Data

  • Guo, T.;Yasuoka, Y.
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.519-521
    • /
    • 2003
  • Within the paper an approach for the automatic extraction and reconstruction of buildings in urban built-up areas base on fusion of high-resolution satellite image and LIDAR data is presented. The presented data fusion scheme is essentially motivated by the fact that image and range data are quite complementary. Raised urban objects are first segmented from the terrain surface in the LIDAR data by making use of the spectral signature derived from satellite image, afterwards building potential regions are initially detected in a hierarchical scheme. A novel 3D building reconstruction model is also presented based on the assumption that most buildings can be approximately decomposed into polyhedral patches. With the constraints of presented building model, 3D edges are used to generate the hypothesis and follow the verification processes and a subsequent logical processing of the primitive geometric patches leads to 3D reconstruction of buildings with good details of shape. The approach is applied on the test sites and shows a good performance, an evaluation is described as well in the paper.

  • PDF