• Title/Summary/Keyword: 3D Concrete Printing

Search Result 47, Processing Time 0.031 seconds

Evaluation of 3D concrete printing performance from a rheological perspective

  • Lee, Keon-Woo;Lee, Ho-Jae;Choi, Myoung-Sung
    • Advances in concrete construction
    • /
    • v.8 no.2
    • /
    • pp.155-163
    • /
    • 2019
  • The objective of this study was to derive a cementitious material for three-dimensional (3D) concrete printing that fulfills key performance functions, extrudability, buildability and bondability for 3D concrete printing. For this purpose, the rheological properties shown by different compositions of cement paste, the most fundamental component of concrete, were assessed, and the correlation between the rheological properties and key performance functions was analyzed. The results of the experiments indicated that the overall properties of a binder have a greater influence on the yield stress than the plastic viscosity. When the performance of a cementitious material for 3D printing was considered in relation with the properties of a binder, a mixture with FA or SF was thought to be more appropriate; however, a mixture containing GGBS was found to be inappropriate as it failed to meet the required function especially, buildability and extrudability. For a simple quantitative evaluation, the correlation between the rheological parameters of cementitious materials and simplified flow performance test results-time taken to reach T-150 and the number of hits required to reach T-150-in consideration of the flow of cementitious materials was compared. The result of the analysis showed a high reliability for the correlation between the rheological parameters and the time taken to reach T-150, but a low reliability for the number of hits needed for the fluid to reach T-150. In conclusion, among several performance functions, extrudability and buildability were mainly assessed based on the results obtained from various formulations from a rheological perspective, and the suitable formulations of composite materials for 3D printing was derived.

Investigation for Developing 3D Concrete Printing Apparatus for Underwater Application (수중적층용 3D 콘크리트 프린팅 장비 개발에 대한 연구)

  • Hwang, Jun Pil;Lee, Hojae;Kwon, Hong-Kyu
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.44 no.3
    • /
    • pp.10-21
    • /
    • 2021
  • Recently, the demand for atypical structures with functions and sculptural beauty is increasing in the construction industry. Existing mold-based structure production methods have many advantages, but building complex atypical structures represents limitations due to the cost and technical characteristics. Production methods using molding are suitable for mass production systems, but production cost, construction period, construction cost, and environmental pollution can occur in small quantity batch production. The recent trend in the construction industry calls for new construction methods of customized small quantity batch production methods that can produce various types of sophisticated structures. In addition to the economic effects of developing related technologies of 3D Concrete Printers (3DCP), it can enhance national image through the image of future technology, the international status of the construction civil engineering industry, self-reliance, and technology export. Until now, 3DCP technology has been carried out in producing and utilizing residential houses, structures, etc., on land or manufacturing on land and installing them underwater. The final purpose of this research project is to produce marine structures by directly printing various marine structures underwater with 3DCP equipment. Compared to current underwater structure construction techniques, constructing structures directly underwater using 3DCP equipment has the following advantages: 1) cost reduction effects: 2) reduction of construct time, 3) ease of manufacturing amorphous underwater structures, 4) disaster prevention effects. The core element technology of the 3DCP equipment is to extrude the transferred composite materials at a constant quantitative speed and control the printing flow of the materials smoothly while printing the output. In this study, the extruding module of the 3DCP equipment operates underwater while developing an extruding module that can control the printing flow of the material while extruding it at a constant quantitative speed and minimizing the external force that can occur during underwater printing. The research on the development of 3DCP equipment for printing concrete structures underwater and the preliminary experiment of printing concrete structures using high viscosity low-flow concrete composite materials is explained.

Development of a Large 3D printer for Manufacturing Form-Liner and Protective Skin of Concrete Structures

  • Jang, Jungsik;Hong, Kee-Jeung
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.12 no.3
    • /
    • pp.74-86
    • /
    • 2020
  • This study discussesresearch and development of large-sized 3D printers that can be applied to construction and civil engineering for various designs of protective casing on foam liner for concrete exteriors. The consistent use of concrete represents the current surroundings. However, concrete exteriors in Korea have not considered the regional characteristics, but the concrete has been poured solely for economical aspects for the last decade or two. There are many cases of poor installation and not enough design development projects to correct it. This study was conducted to apply various patterns, regional characteristics, and 3D printing for protective casing design for foam liner to create various designs for the concrete walls. Therefore, we started researching on a large 3D printer, and designed and developed this system. Considering the chronological process, the properties of concrete structures were identified, the application of designs for concrete in Korea and abroad and the 3D printing materials for the protective casing were surveyed and analyzed, and a stereotype was produced in the first year to study designs for the beauty of concrete surfaces. In the second year, images of regional characteristics were gathered, design ideas for regional promotion were derived, virtual images were produced along with design modeling to simulate the appearances, and verify the effect of application and promotion. Finally, in the third year, the 3D printer for concrete foam liner was constantly improved to analyze the 3D printing program and the various library elements to complete an actual large-sized 3D printer.

Investigation on the Development of 3D Concrete Printing(3DPC) Technology Using Coarse Aggregation (굵은 골재를 이용한 3D 콘크리트 프린팅 기술개발에 대한 연구)

  • Hwang, Jun Pil;Kwon, Hong-Kyu
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.45 no.3
    • /
    • pp.66-77
    • /
    • 2022
  • Digitization and automation technologies have rapidly maximized productivity and efficiency in all industries over the past few decades. Construction automation technology has either stagnated over the same period or has not kept pace with overall economic productivity. According to the research studies up to now, the output of concrete structures using coarse aggregates (8mm or more) is very limited due to the limitations of equipment and materials. In this study, information on the development process of 3DCP equipment that can print concrete structures with the printing width (100 mm or more) and printing thickness (30 mm or more) using a 3DCP material mixed with coarse aggregate (8 mm or more) is provided. To verify the performance of the developed 3DCP equipment, experimental data are provided on output variables, the number of layers, and the inter-layer printing time interval. The evaluation and verification data of various mechanical properties (compressive and splitting tensile strength) of printed materials using coarse aggregates are provided.

Mechanical Properties Evaluation of 3D Printing Recycled Concrete utilizing Wasted Shell Aggregate (패각 잔골재를 활용한 3D 프린팅 자원순환 콘크리트의 역학적 성능 평가)

  • Jeewoo Suh;Ju-Hyeon Park;Tong-Seok Han
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.37 no.1
    • /
    • pp.33-40
    • /
    • 2024
  • The volume of shells, a prominent form of marine waste, is steadily increasing each year. However, a significant portion of these shells is either discarded or left near coastlines, posing environmental and social concerns. Utilizing shells as a substitute for traditional aggregates presents a potential solution, especially considering the diminishing availability of natural aggregates. This approach could effectively reduce transportation logistics costs, thereby promoting resource recycling. In this study, we explore the feasibility of employing wasted shell aggregates in 3D concrete printing technology for marine structures. Despite the advantages, it is observed that 3D printing concrete with wasted shells as aggregates results in lower strength compared to ordinary concrete, attributed to pores at the interface of shells and cement paste. Microstructure characterization becomes essential for evaluating mechanical properties. We conduct an analysis of the mechanical properties and microstructure of 3D printing concrete specimens incorporating wasted shells. Additionally, a mix design is proposed, taking into account flowability, extrudability, and buildability. To assess mechanical properties, compression and bonding strength specimens are fabricated using a 3D printer, and subsequent strength tests are conducted. Microstructure characteristics are analyzed through scanning electron microscope tests, providing high-resolution images. A histogram-based segmentation method is applied to segment pores, and porosity is compared based on the type of wasted shell. Pore characteristics are quantified using a probability function, establishing a correlation between the mechanical properties and microstructure characteristics of the specimens according to the type of wasted shell.

Shear Bond Strength of 3D Printed Concrete Layers According to Water Cement Ratio and Printing Time Gap (물시멘트비와 프린팅 시간간격에 따른 3D 프린팅 콘크리트 레이어의 전단부착강도)

  • Kim, Jin-Ho;Lee, Yoon Jung;Jeong, Hoseong;Kim, Kang Su
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.6
    • /
    • pp.199-208
    • /
    • 2021
  • The extrudability of 3D printed concrete and its member strength can be highly influenced by water cement ratio (W/C) and printing time gap (PTG). In this study, mold cast specimens and 3D printed specimens were fabricated with variables of W/C ratio and PTG, and their shear bond strength and interlayer surface moisture content were measured and analyzed. The test results showed that the shear bond strength is greatly influenced by the amount of interlayer surface moisture. It is thus recommended that proper amount of interlayer surface moisture with respect to PTG needs to be maintained to have a required interlayer shear bond strength. In addition, further research is required to estimate the effect of many environmental factors that can influence the interlayer surface moisture content.

Buildability of 3D Printed Concrete Structures at Various Nozzle Speeds and Aspect Ratios (노즐이동속도와 변장비에 따른 3D 프린팅 콘크리트 구조물의 시공성)

  • Park, Ji-Hun;Lee, Jungwoo;Joh, Changbin;Yang, In-Hwan
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.7 no.4
    • /
    • pp.375-382
    • /
    • 2019
  • In this study, an experimental study on the buildability of the structure using the developed printing materials and equipment was performed. Experimental variables included the moving speed of nozzles(=80 and 100mm/s), the revolutions per minute (RPM) of screw in discharge buckets, and the aspect ratio(=1.67 and 5.00) reflecting wall length of the structures. Buildability of the 3D printed concrete structures was analyzed based on the maximum decomposition layer and collapse patterns of the structures according to the experimental variables. The nozzle movement speed of 80mm/s and the aspect ratio of 1.67 were favorable for 3D printing in this study. The collapse process of structure due to uneven layer decomposition was also analyzed through the relative displacement measurement of the lower part of the structure during printing.

A basic study of Properties of Cement Mortar for 3D Printing Concrete Using Methyl Cellulose Thickener (메틸셀룰로오스(MC)계 증점제 혼입에 따른 3D 프린팅 콘크리트용 시멘트계 모르타르의 특성 변화에 대한 기초적 연구)

  • Kim, Han-Sol;Jang, Jong-Min;Lee, Han-Seung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2019.11a
    • /
    • pp.68-69
    • /
    • 2019
  • Integrating 3D printing into architecture is gaining attention because it allows construction of construction structures without formwork. Among them, 3D printing construction materials must have high flow performance and at the same time ensure the performance that does not collapse during lamination. Therefore, in this study, we tried to determine the fluidity and lamination properties of mortar formulations, and set the thickener incorporation ratio as the formulation parameters. As a result of this experiment, it was confirmed that the lamination performance was secured from the thickening agent mixing rate of 1.5%.

  • PDF

Fire Performance of 3D Printing Wall in Simplified Heating Test (간이 내화시험에 의한 3D 프린팅 벽체의 내화 성능에 관한 연구)

  • Kibeom Ju;Byunghyun Ryu
    • Journal of the Korean GEO-environmental Society
    • /
    • v.24 no.11
    • /
    • pp.11-17
    • /
    • 2023
  • In recent construction research, the focus has primarily been on developing 3D printers and construction-specific materials. 3D printing technology in construction is growing rapidly due to its potential benefits. However, there's a notable lack of research on the fire performance of 3D Printed Concrete (3DPC) walls. This study addresses this gap by investigating how 3DPC walls respond to controlled heating conditions in a simplified test. The research aims to provide crucial insights into the behavior of 3D-printed mortar composite walls when exposed to fire. The findings have the potential to enhance safety and reliability in 3D printing technology within the construction industry. Furthermore, it could contribute to improving the fire safety standards of architectural structures and expand the use of 3D printing in future construction projects.

The Buildability and Strength Properties of 3D Printed Concrete in the Air and Underwater Environment (수중과 기중환경에서 출력된 3D 프린팅 콘크리트의 적층성능 및 강도 특성 분석)

  • Eun-A Seo;Ho-Jae Lee
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.28 no.2
    • /
    • pp.35-42
    • /
    • 2024
  • This study evaluated the buildability and mechanical properties of 3DP concrete printed in air and underwater environments. Buildability was evaluated by green strength test on fresh concrete and height and deflection immediately and 1 hour after printing. The green compressive strength of the concrete was 5.0 kPa after 30 minutes and 7.9 kPa after 3 hours, an increase of 1.6 times the initial strength. The total height of the laminated parts met the design height regardless of the printing environment. The amount of deflection in air and under water 1 hour after printing was 1 mm and 0.2 mm, respectively, indicating a small amount of deflection under water. The apparent density of the sample appeared in the order of A-M > A-P > UW-P. This is believed to be because a large amount of air is mixed into the concrete during the printing process, and water infiltrates during the underwater printing process. The compressive strength ratio of UW-P/A-P was 0.86 at 1 day, but the compressive strength of the underwater printed concrete was high from 7 days.