• Title/Summary/Keyword: 3D Building Modeling

Search Result 489, Processing Time 0.025 seconds

Considerations When Quantity Take-Off of Rebar Based on the BIM Model (BIM Model 기반 철근 수량산출 시 고려사항)

  • Jeong, Seo-Hee;Kim, Ju-Yong;Kim, Gwang-Hee
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.05a
    • /
    • pp.73-74
    • /
    • 2023
  • The purpose of this study is to derive the cause of the quantity difference and present the considerations when take-off rebar quantity based on BIM model by comparing the quantity of rebar based on BIM model with 2D drawing. This research was limited to take-off the quantity of rebars in the building frame work, and after take-off the quantity of rebars by 3D modeling the 2D drawing of the target building with Revit, the quantity difference was compared with 2D-based software. Therefore, when take-off the quantity of rebars based on the BIM model, instead of take-off the existing 2D-based quantity premium proportion, according to general structural consider development length, lap splice length, covering thickness, reinforcing bars and spacing. In the future, this study is expected to contribute to improving the accuracy of BIM-based frame construction quantity take-off.

  • PDF

3D Reconstruction of Urban Building using Laser range finder and CCD camera

  • Kim B. S.;Park Y. M.;Lee K. H.
    • Proceedings of the KSRS Conference
    • /
    • 2004.10a
    • /
    • pp.128-131
    • /
    • 2004
  • In this paper, we describe reconstructed 3D-urban modeling techniques for laser scanner and CCD camera system, which are loading on the vehicle. We use two laser scanners, the one is horizon scanner and the other is vertical scanner. Horizon scanner acquires the horizon data of building for localization. Vertical scan data are main information for constructing a building. We compared extraction of edge aerial image with laser scan data. This method is able to correct the cumulative error of self-localization. Then we remove obstacles of 3D-reconstructed building. Real-texture information that is acquired with CCD camera is mapped by 3D-depth information. 3D building of urban is reconstructed to 3D-virtual world. These techniques apply to city plan. 3D-environment game. movie background. unmanned-patrol etc.

  • PDF

EPAR V2.0: AUTOMATED MONITORING AND VISUALIZATION OF POTENTIAL AREAS FOR BUILDING RETROFIT USING THERMAL CAMERAS AND COMPUTATIONAL FLUID DYNAMICS (CFD) MODELS

  • Youngjib Ham;Mani Golparvar-Fard
    • International conference on construction engineering and project management
    • /
    • 2013.01a
    • /
    • pp.279-286
    • /
    • 2013
  • This paper introduces a new method for identification of building energy performance problems. The presented method is based on automated analysis and visualization of deviations between actual and expected energy performance of the building using EPAR (Energy Performance Augmented Reality) models. For generating EPAR models, during building inspections, energy auditors collect a large number of digital and thermal imagery using a consumer-level single thermal camera that has a built-in digital lens. Based on a pipeline of image-based 3D reconstruction algorithms built on GPU and multi-core CPU architecture, 3D geometrical and thermal point cloud models of the building under inspection are automatically generated and integrated. Then, the resulting actual 3D spatio-thermal model and the expected energy performance model simulated using computational fluid dynamics (CFD) analysis are superimposed within an augmented reality environment. Based on the resulting EPAR models which jointly visualize the actual and expected energy performance of the building under inspection, two new algorithms are introduced for quick and reliable identification of potential performance problems: 1) 3D thermal mesh modeling using k-d trees and nearest neighbor searching to automate calculation of temperature deviations; and 2) automated visualization of performance deviations using a metaphor based on traffic light colors. The proposed EPAR v2.0 modeling method is validated on several interior locations of a residential building and an instructional facility. Our empirical observations show that the automated energy performance analysis using EPAR models enables performance deviations to be rapidly and accurately identified. The visualization of performance deviations in 3D enables auditors to easily identify potential building performance problems. Rather than manually analyzing thermal imagery, auditors can focus on other important tasks such as evaluating possible remedial alternatives.

  • PDF

3-D Reconstruction of Buildings using 3-D Line Grouping for Urban Modeling

  • Jung, Young-Kee
    • Journal of information and communication convergence engineering
    • /
    • v.7 no.1
    • /
    • pp.1-6
    • /
    • 2009
  • In order to obtain a 3-D urban model, an abstraction of the surface model is required. This paper describes works on the 3D reconstruction and modeling by the grouping 3D line segments extracted from the stereo matching of edges, which is derived from multiple images. The grouping is achieved by conditions of degrees and distances between lines. Building objects are determined by the junction combinations of the grouped line segments. The proposed algorithm demonstrates effective results of 3D reconstruction of buildings with 2D aerial images.

GIS Based Realistic Weather Radar Data Visualization Technique

  • Jang, Bong-Joo;Lim, Sanghun
    • Journal of Multimedia Information System
    • /
    • v.4 no.1
    • /
    • pp.1-8
    • /
    • 2017
  • In recent years, the quixotic nature and concentration of rainfall due to global climate change has intensified. To monitor localized heavy rainfalls, a reliable disaster monitoring and warning system with advanced remote observation technology and high-precision display is important. In this paper, we propose a GIS-based intuitive and realistic 3D radar data display technique for accurate and detailed weather analysis. The proposed technique performs 3D object modeling of various radar variables along with ray profiles and then displays stereoscopic radar data on detailed geographical locations. Simulation outcomes show that 3D object modeling of weather radar data can be processed in real time and that changes at each moment of rainfall events can be observed three-dimensionally on GIS.

3D Stereoscopic Navigation of Buildings Considering Visual Perception (시각적 인지를 고려한 건축물의 3D 스테레오 내비게이션)

  • Shin, Il-Kyu;Yoon, Yeo-Jin;Choi, Jin-Won;Choi, Soo-Mi
    • Journal of the Korea Computer Graphics Society
    • /
    • v.18 no.2
    • /
    • pp.63-72
    • /
    • 2012
  • As BIM(Building Information Modeling) is widely used in the construction process the need for exploring building models realistically is also growing. In this paper, we present a 3D stereoscopic navigation method for virtual buildings considering virtual perception. We first find out factors that may cause virtual discomfort while navigating stereoscopic building models, and then develop a method for automatically adjusting the range of virtual camera separation. In addition, we measure each user's JND(Just Noticeable Difference) in depth to adjust virtual camera separation and movement. The presented method can be used for various architectural applications by creating user-customized 3D stereoscopic contents.

External exposure specific analysis for radiation worker in reuse of containment building for Kori Unit 1

  • Byon, Jihyang;Park, Sangjune;Kim, Yangjin;Ahn, Seokyoung
    • Nuclear Engineering and Technology
    • /
    • v.54 no.5
    • /
    • pp.1781-1788
    • /
    • 2022
  • The containment building Kori Unit 1 may require sequential steps for full decommissioning. This study assumes that the containment building is to be used as an auxiliary building that handles nuclear power systems and materials during decommissioning before conversion into a greenfield. Through the derivation of guidelines and dose evaluation, it was confirmed whether the radiation workers were satisfied with the ALARA decision. The specific modeling of the external radiation exposure was performed based on the facility investigation procedures. The external radiation specific derived concentration guideline levels (DCGLs) for radiation workers in containment building were obtained using the RESRAD-BUILD code and were applied to the VISIPLAN 3D ALARA Planning Tool code to calculate the working dose and check worker safety. The derivation of site-specific and realistic DCGLs and dose evaluation via 3D modeling can contribute to the scenario development for the decommission and remediation of containment building.

AUTOMATIC IDENTIFICATION OF ROOF TYPES AND ROOF MODELING USING LIDAR

  • Kim, Heung-Sik;Chang, Hwi-Jeong;Cho, Woo-Sug
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.83-86
    • /
    • 2005
  • This paper presents a method for point-based 3D building reconstruction using LiDAR data and digital map. The proposed method consists of three processes: extraction of building roof points, identification of roof types, and 3D building reconstruction. After extracting points inside the polygon of building, the ground surface, wall and tree points among the extracted points are removed through the filtering process. The filtered points are then fitted into the flat plane using ODR(Orthogonal Distance Regression). If the fitting error is within the predefined threshold, the surface is classified as a flat roof. Otherwise, the surface is fitted and classified into a gable or arch roof through RMSE analysis. Based on the roof types identified in automated fashion, the 3D building reconstruction is performed. Experimental results showed that the proposed method classified successfully three different types of roof and that the fusion of LiDAR data and digital map could be a feasible method of modelling 3D building reconstruction.

  • PDF

Basic Research on BIM-Based Quantity Take-off Guidelines

  • Yun, Seokheon;Kim, Sangchul
    • Architectural research
    • /
    • v.15 no.2
    • /
    • pp.103-109
    • /
    • 2013
  • Various types of building information should be linked to 3D model objects for their effective use by stakeholders. Because Building Information Modeling (BIM) based on 3D is used by different stakeholders, the created BIM need standard guidelines for each purpose, as, for example, for quantity take-off. Thus, this study was conducted to propose guidelines for BIM modeling for quantity take-off in the framework, especially, in the concrete and form. The proposed guidelines adopted each element of the BIM model based on an analysis of the problem of the general BIM model. Moreover, the usability and accuracy of the reinforced structure modeling guidelines were verified by comparing the quantity of the commercial estimation software and the modeling quantity using the proposed modeling guidelines.

Parametric Modeling Method for 3D Assembly Design of Parts Composing Superstructure Module on Modular Steel Bridge (모듈러 강교량 상부모듈 구성파트의 3차원 조립설계를 위한 파라메트릭 모델링 방법)

  • Lee, Sang Ho;An, Hyun Jung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.1
    • /
    • pp.35-46
    • /
    • 2013
  • A parametric modeling method, one of the core technology of BIM (Building Information Modeling), is proposed for efficient 3D assembly design among components of a superstructure module of modular steel bridge. Assembly system is classified into 3 levels as LoD (Level of Details) for 3D assembly design of the parts. Components forming 3D shape of the parts are identified and defined as parameters, variables depending on parameters, or constants independent of the parameters. Then, spatial assembly rules among the parts are defined according to the assembly system. Positional relations among the identified shape components are defined for mating spatial position and geometrical relations are defined for constraining degree of freedom on X, Y, and Z axis. Finally, a standardized template is designed by applying the rules to 3D based assembly design for the parts of the superstructure module. In addition, applicability of the parametric modeling method is demonstrated by testing the shape variation of the superstructure module according to changing the defined parameters.