• 제목/요약/키워드: 3D Blood Vessels

검색결과 53건 처리시간 0.027초

3차원 골격곡선을 이용한 가상혈관 탐색 방안 (Virtual Navigation of Blood Vessels using 3D Curve-Skeletons)

  • 박상진;박형준
    • 한국CDE학회논문집
    • /
    • 제22권1호
    • /
    • pp.89-99
    • /
    • 2017
  • In order to make a virtual endoscopy system effective for exploring the interior of the 3D model of a human organ, it is necessary to generate an accurate navigation path located inside the 3D model and to obtain consistent camera position and pose estimation along the path. In this paper, we propose an approach to virtual navigation of blood vessels, which makes proper use of orthogonal contours and skeleton curves. The approach generates the orthogonal contours and the skeleton curves from the 3D mesh model and its voxel model, all of which represent the blood vessels. For a navigation zone specified by two nodes on the skeleton curves, it computes the shortest path between the two nodes, estimates the positions and poses of a virtual camera at the nodes in the navigation zone, and interpolates the positions and poses to make the camera move smoothly along the path. In addition to keyboard and mouse input, intuitive hand gestures determined by the Leap Motion SDK are used as user interface for virtual navigation of the blood vessels. The proposed approach provides easy and accurate means for the user to examine the interior of 3D blood vessels without any collisions between the camera and their surface. With a simple user study, we present illustrative examples of applying the approach to 3D mesh models of various blood vessels in order to show its quality and usefulness.

MDCT를 이용한 간과 혈관의 3D 영상분석 (3D Image Analysis of Liver and Blood Vessels using MDCT)

  • 양비;박종원
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2009년도 춘계학술발표대회
    • /
    • pp.155-156
    • /
    • 2009
  • In this paper we present 3D image analysis of liver and blood vessels using MDCT. The purpose is to enhance the performance of clinician in assessing anatomical information of liver and blood vessels. The system consists of two parts: 3D image reconstruction and analysis of the 3D liver and blood vessel image. The central vein of the liver is the most important blood vessel for the liver transplantation. We will find the central vein's location and characteristic, and will scheme out a computer assistant liver transplantation planning. It will be an effective tool for interventional radiology, surgical planning, and quantitative diagnosis.

혈관조영영상에서 고화질 혈관가시화를 위한 영상정합 (Image Registration for High-Quality Vessel Visualization in Angiography)

  • 홍헬렌;이호;신영길
    • 한국시뮬레이션학회:학술대회논문집
    • /
    • 한국시뮬레이션학회 2003년도 추계학술대회 및 정기총회
    • /
    • pp.201-206
    • /
    • 2003
  • In clinical practice, CT Angiography is a powerful technique for the visualziation of blood flow in arterial vessels throughout the body. However CT Angiography images of blood vessels anywhere in the body may be fuzzy if the patient moves during the exam. In this paper, we propose a novel technique for removing global motion artifacts in the 3D space. The proposed methods are based on the two key ideas as follows. First, the method involves the extraction of a set of feature points by using a 3D edge detection technique based on image gradient of the mask volume where enhanced vessels cannot be expected to appear, Second, the corresponding set of feature points in the contrast volume are determined by correlation-based registration. The proposed method has been successfully applied to pre- and post-contrast CTA brain dataset. Since the registration for motion correction estimates correlation between feature points extracted from skull area in mask and contrast volume, it offers an accelerated technique to accurately visualize blood vessels of the brain.

  • PDF

Clinical Significance of Detecting Lymphatic and Blood Vessel Invasion in Stage II Colon Cancer Using Markers D2-40 and CD34 in Combination

  • Lai, Jin-Huo;Zhou, Yong-Jian;Bin, Du;Qiangchen, Qiangchen;Wang, Shao-Yuan
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권3호
    • /
    • pp.1363-1367
    • /
    • 2014
  • This research was conducted to compare differences in colon cancer lymphatic vessel invasion (LVI) with D2-40 antibody labeling and regular HE staining, blood vessel invasion (BVI) with CD34 antibody labeling and HE staining and to assess the possibility of using D2-40-LVI/CD34-BVI in combination for predicting stage II colon cancer prognosis and guiding adjuvant chemotherapy.Anti-D2-40 and anti-CD34 antibodies were applied to tissue samples of 220 cases of stage II colon cancer to label lymphatic vessels and small blood vessels, respectively. LVI and BVI were assessed and multivariate COX regression analysis was performed for associations with colon cancer prognosis. Regular HE staining proved unable to differentiate lymphatic vessels from blood vessels, while D2-40 selectively labeled lymphatic endothelial cell cytosol and CD34 was widely expressed in large and small blood vessels of tumors as well as normal tissues. Compared to regular HE staining, D2-40-labeling for LVI and CD34-labeling for BVI significantly increased positive rate (22.3% vs 10.0% for LVI, and 19.1% vs 9.1% for BVI). Multivariate analysis indicated that TNM stage, pathology tissue type, post-surgery adjuvant chemotherapy, D2-40-LVI, and CD34-BVI were independent factors affecting whole group colon cancer prognosis, while HE staining-BVI, HE staining-LVI were not significantly related. When CD34-BVI/D2-40-LVI were used in combination for detection, the risk of death for patients with two or one positive results was 5.003 times that in the LVI(-)&BVI(-) group (95% CI 2.365 - 9.679). D2-40 antibody LVI labeling and CD34 antibody BVI labeling have higher specificity and accuracy than regular HE staining and can be used as molecular biological indicators for prognosis prediction and guidance of adjuvant chemotherapy for stage II colon cancer.

An automatic detection method for lung nodules based on multi-scale enhancement filters and 3D shape features

  • Hao, Rui;Qiang, Yan;Liao, Xiaolei;Yan, Xiaofei;Ji, Guohua
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제13권1호
    • /
    • pp.347-370
    • /
    • 2019
  • In the computer-aided detection (CAD) system of pulmonary nodules, a high false positive rate is common because the density and the computed tomography (CT) values of the vessel and the nodule in the CT images are similar, which affects the detection accuracy of pulmonary nodules. In this paper, a method of automatic detection of pulmonary nodules based on multi-scale enhancement filters and 3D shape features is proposed. The method uses an iterative threshold and a region growing algorithm to segment lung parenchyma. Two types of multi-scale enhancement filters are constructed to enhance the images of nodules and blood vessels in 3D lung images, and most of the blood vessel images in the nodular images are removed to obtain a suspected nodule image. An 18 neighborhood region growing algorithm is then used to extract the lung nodules. A new pulmonary nodules feature descriptor is proposed, and the features of the suspected nodules are extracted. A support vector machine (SVM) classifier is used to classify the pulmonary nodules. The experimental results show that our method can effectively detect pulmonary nodules and reduce false positive rates, and the feature descriptor proposed in this paper is valid which can be used to distinguish between nodules and blood vessels.

BMI에 따른 요골동맥의 혈관특성과 부/침맥과의 상관관계 연구 (The Study for Correlation Characteristics on Radial Artery and Floating/sinking Pulse with BMI)

  • 이유정;이전;이혜정;김종열
    • 한국한의학연구원논문집
    • /
    • 제14권3호
    • /
    • pp.121-126
    • /
    • 2008
  • Pulse diagnosis refers to the process of diagnosing a patient by feeling an artery on the wrist based on the shape that the pulse take s while the hold-down pressure increase. The styloid process artery on the wrist is usually felt, and the pulse is taken on Chon, Gwan and Cheok using three fingers. This study is to examine the structural difference in the location of pulse diagnosis by measuring and analyzing blood diameter, blood depth, and blood flow velocity of the location of pulse diagnosis by using ultrasonic wave (VOLUSION730 PRO, GE Medical, U.S.A). This study also attempted to grasp whether the characteristics of blood vessels differ depending on Body Mass Index (BMI) and analyzed their correlation with Oriental medical pulse diagnosis. The male subjects without cardiovascular diseases were divided into the normal BMI group, the underweight group and the overweight group and 10 people of each group were measured, Blood depth, blood diameter and blood flow velocity at the location of pulse diagnosis (Chon, Gwan, Cheok) of the wrists of left and right hands were measured and the pulse wave was measured by using pulse diagnosis instrument (3-D Mac, DaeyoMedi, Korea).The results of this study showed that the characteristics of blood vessels differ depending on the degrees of obesity, and the characteristics of floating pulse and sinking pulse of Oriental medical pulses were related to the degrees of obesity. This shows that the characteristics of the blood vessels of subjects and BMI information are the major indicators for diagnosis and are the matters that must always be considered when developing the algorithm of pulse diagnosis.

  • PDF

광학 센서를 이용한 비관혈적 혈압 측정의 오차 보정 (Compensation of Error in Noninvasive Blood Pressure Measurement System Using Optical Sensor)

  • 고재일;정인철;이동희;박신우;황성오;박소미;김기연;주현실;윤형로
    • 대한의용생체공학회:의공학회지
    • /
    • 제28권2호
    • /
    • pp.178-186
    • /
    • 2007
  • This study is attempted to correct an error of electronic blood pressure meter with an optical sensor. In general, for a hospitalized patient, ECG, blood pressure, oxygen saturation, and respiration are basically measured to monitor the patient's condition. Opening of a blood vessel after it is occluded by pressurizing the cuff influences the blood flow of peripheral blood vessels as well as oscillation changes in the cuff. Blood vessels are occluded and peripheral blood flow disappears at cuff pressure above the examinee's blood pressure, while blood vessels are opened and peripheral blood flow appears again at cuff pressure under the examinee's blood pressure. Then Disappear-Appear Point Length(DAPL) of peripheral blood flow can be judged with the signal of peripheral blood flow, thus is available as a factor of error correction for electronic blood pressure meter. Also, systolic or diastolic blood pressure can be corrected with Appear-Point-Pressure(APP) of cuff pressure at a point where blood flow occurs and Appear-Maximum Pressure(AMP) of cuff pressure at the maximum amplitude point of peripheral blood flow after peripheral blood flow appears again. For verification, 27 examinees were selected, and their blood value was obtained through experimental procedure of 4 stages including induction of blood pressure change. The examinees were divided into two groups of experimental group and control group, regression analysis was conducted for experimental group, and correction of a blood pressure error was verified with optical signal by applying the regression equation calculated in experimental group to control group. As an experimental result, mean of the whole measurement errors was 5mmHg or more, which did not meet the standard fur blood pressure meter. As a result of correcting blood pressure measurements with data of DAPL, APP, and AMP as drawn out of PPG signal, systolic blood pressure, mean blood pressure, and diastolic blood pressure were $-0.6{\pm}4.4mmHg,\;-1.0{\pm}3.9mmHg$ and $-1.3{\pm}5.4mmHg$, respectively, indicating that mean of the whole measurement errors was greatly improved, and standard deviation was decreased.

3차원 혈관 모델에서 협착 및 팽창 영역 탐색 방안 (Detecting Regions of Stenosis and Aneurysm in a 3D Blood Vessel Model)

  • 박상진;김재성;박형준
    • 한국산학기술학회논문지
    • /
    • 제19권1호
    • /
    • pp.113-120
    • /
    • 2018
  • 혈관 질환 검사는 일반적으로 혈관 조영술(angiography)과 CT 혈관 조영술(CT angiography) 등을 통해 이루어지며, 대부분 검사자의 육안을 통한 주관적 판단에 의존하여 진단이 이루어진다. 본 논문에서는 의료영상으로부터 재구성된 3차원 혈관 내벽 모델로부터 대표적 혈관질환에 해당하는 협착과 팽창 질환 의심 영역을 탐색하는 방안을 제안한다. 먼저, 의료영상에서 재구성된 3차원 혈관 내벽 모델로부터 혈관에 대한 골격 곡선(curve skeletons)과 외곽선(contours)을 생성하고, 생성된 골격 곡선을 가지 단위로 분할한 후, 가지에 속하는 각 노드에 대한 외곽선의 면적을 계산한다. 그런 다음, 계산된 외곽선들의 면적에 대해 평균 면적 및 최대/최소 면적, 그리고 인접 노드들 간의 외곽선 면적 차이를 고려하여 협착 및 팽창 질환의심 영역에 해당하는 노드들을 탐색한다. 다음으로 탐색된 의심 영역들을 적절하게 시각화함으로써 혈관질환의 진단을 지원한다. 제안된 방안을 구현하여 몇 가지 3D 인체 혈관모델에 적용한 결과 질환 의심 영역이 잘 찾아짐을 확인하였다. 이를 통해 제안된 방안의 유용성을 보인다.

쥐 뇌의 고해상도 이미지에서 임계화 기법을 활용한 뇌혈관 네트워크 분석 및 3D 재현 (Analysis and 3D Reconstruction of a Cerebral Vascular Network Using Image Threshold Techniques in High-resolution Images of the Mouse Brain)

  • 이준석
    • 한국멀티미디어학회논문지
    • /
    • 제22권9호
    • /
    • pp.992-999
    • /
    • 2019
  • In this paper, I lay the foundation for creating a multiscale atlas that characterizes cerebrovasculature structural changes across the entire brain of a mouse in the Knife-Edge Scanning Microscopy dataset. The geometric reconstruction of the vascular filaments embedded in the volume imaging dataset provides the ability to distinguish cerebral vessels by diameter and other morphological properties across the whole mouse brain. This paper presents a means for studying local variations in the small vascular morphology that have a significant impact on the peripheral nervous system in other cerebral areas, as well as the robust and vulnerable side of the cerebrovasculature system across the large blood vessels. I expect that this foundation will prove invaluable towards data-driven, quantitative investigations into the system-level architectural layout of the cerebrovasculature and surrounding cerebral microstructures.

저자장 자기공명영상 시스템에서의 위상대조도 혈관조영기법의 개발과 그 유용성에 대한 연구 (Development and Feasibility Study for Phase Contrast MR Angiography at Low Tesla Open-MRI System)

  • 이동훈;홍철표;이만우;한봉수
    • 한국의학물리학회지:의학물리
    • /
    • 제23권3호
    • /
    • pp.177-187
    • /
    • 2012
  • 자기공명 혈관조영술은 혈관협착, 동맥류, 동정맥기형 등의 혈관질환 진단에 널리 사용되고 있다. 특히 위상대조도 자기공명 혈관조영술은 조영제를 사용하지 않는 자기공명 혈관조영술로서 혈관의 해부학적인 정보를 제공함과 동시에 혈류 속도측정이 가능하다. 본 연구에서는 저자장 자기공명영상 시스템에 적합한 2차원 및 3차원 위상대조도 혈관조영술의 펄스열을 개발하여 유속팬텀과 정상인의 뇌에 적용한 후 획득한 혈관영상과 위상분석을 통한 속도측정을 바탕으로 저자장 자기공명영상 시스템에서의 위상대조도 혈관조영술의 유용성을 평가하고자 한다. 2차원 및 3차원 위상대조도 혈관조영술을 제작된 유속팬텀과 인체 내에 적용하여 상시상 정맥동, 곧은 정맥동 및 두 혈관의 합류지점에 대한 속도측정을 시행하였다. 결과로서 2차원 위상대조도 혈관조영술의 사용은 큰 혈관에 대해서는 높은 가시도를 나타내지만, 작은 혈관에 대한 가시도는 상대적으로 저하됨을 확인할 수 있었다. 3차원 위상대조도 혈관조영술을 사용한 혈관영상은 2D PC MRA 영상에 비해 큰 혈관은 물론이고 작은 혈관에 대한 가시도가 향상되었으나 작은 혈관에서 영상의 신호가 불균일하여 작은 혈관의 진단에 사용하기에는 적합하지 않았다. 한편 2차원 위상대조도 혈관조영술을 통한 영상에서 큰 혈관의 가시도는 혈류속도를 측정하기에 충분했다. 측정된 결과는 상시상 정맥동의 경우 $25.46{\pm}0.73cm/sec$, 곧은 정맥동의 경우 $24.02{\pm}0.34cm/sec$, 상시상 정맥동과 곧은 정맥동의 합류지점의 경우 $26.15{\pm}1.50cm/sec$으로 나타났으며 이는 앞선 연구결과에서 알려진 전체 심장운동주기를 고려한 정상인들의 각 해당 부위별 혈류속도의 오차범위 내에 포함되는 좋은 결과를 나타내었다. 앞선 결과들을 토대로 본 연구는 현재 국내에서 제작하여 보급중인 저자장 자기공명영상 시스템에서 위상대조도 혈류영상화 기법의 적용 및 응용 가능성을 보여주고 있으며 이를 실용화하기 위한 중요한 기초자료를 제공할 수 있을 것이다.