• Title/Summary/Keyword: 3D 시각화

Search Result 489, Processing Time 0.027 seconds

Visualization of 3D Graphics Shader Space Transformation (3D 그래픽스 셰이더 공간 변환의 시각화)

  • Lee, SangWon
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2022.07a
    • /
    • pp.219-220
    • /
    • 2022
  • 3D 그래픽스 환경에서 입체적인 물체가 2D 모니터에 보여지는 과정에는 여러 단계의 공간 변환과 행렬 계산을 거치게 된다. 이러한 공간 변환은 각 단계가 어떤 의미인지 쉽게 이해하기에 어려운 면이 있다. 본 논문에서는 유니티 3D 엔진에서 작동하는 셰이더를 통해 각 단계의 공간을 시각화 하여 학생들이 보다 쉽게 공간 변환을 이해하는 시각화 방법을 제시한다.

  • PDF

A Study on Atmospheric Environment Visualization by Integrating 3D City Model and CFD Model (3D City모델과 CFD 모델을 통합한 대기환경 시각화 연구)

  • An, Seung-Man;Lee, Ho-Yeong;Sung, Hyo-Hyun;Choi, Yeong-Jin;Woo, Jung-Hun
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.19 no.4
    • /
    • pp.13-21
    • /
    • 2011
  • The purpose of this study is enhancing CFD model by applying detailed and accurate CFD input data produced from 3D City model and integrating CFD model with 3D city model with OpenGL, 3D city aerodynamic simulation, and visualization tool. CFD_NIMR_SNU model developed by NIMR and SNU and 3D City model produced by NGII were used as input data. Wind flow and pollution diffusion simulator and viewer were developed in this study. Atmospheric environment simulation and visualization tool will save time and cost for urban climate planning and management by enhancing visual communication.

3D Visualization of Packing Behavior of Charge Material (장입재 충전 거동의 3차원 시각화)

  • Sang-Hwan Lee
    • Journal of Korea Foundry Society
    • /
    • v.42 no.6
    • /
    • pp.347-357
    • /
    • 2022
  • In this study, 3D visualization of the packing behavior of the charge material in a foundry was attempted. It was simulated based on the practical conditions of the charge material and the melting furnace. It was confirmed whether the 3D visual simulation realistically implements the packing behavior of the manufacturing site. The realistic packing state by the 3D visual simulation was compared with the ideal packing state. It was analyzed in which case the difference between the two packing states occurred. The advantages of applying the 3D visual simulation to the manufacturing process were investigated, and various application plans in the casting industry were proposed.

Method for 3D Visualization of Sound Data (사운드 데이터의 3D 시각화 방법)

  • Ko, Jae-Hyuk
    • Journal of Digital Convergence
    • /
    • v.14 no.7
    • /
    • pp.331-337
    • /
    • 2016
  • The purpose of this study is to provide a method to visualize the sound data to the three-dimensional image. The visualization of the sound data is performed according to the algorithm set after production of the text-based script that form the channel range of the sound data. The algorithm consists of a total of five levels, including setting sound channel range, setting picture frame for sound visualization, setting 3D image unit's property, extracting channel range of sound data and sound visualization, 3D visualization is performed with at least an operation signal input by the input device such as a mouse. With the sound files with the amount an animator can not finish in the normal way, 3D visualization method proposed in this study was highlighted that the low-cost, highly efficient way to produce creative artistic image by comparing the working time the animator with a study presented method and time for work. Future research will be the real-time visualization method of the sound data in a way that is going through a rendering process in the game engine.

JProtein : A Protein Structure Viewer based on Java3D Technology (JProtein : Java3D 기법을 이용한 단백질 구조 뷰어)

  • Moon Nam-Doo;Byun Sang-Hee;Kim Jin-Hong;Han In-Seob;Lee Myung-Joon
    • The KIPS Transactions:PartD
    • /
    • v.11D no.7 s.96
    • /
    • pp.1517-1526
    • /
    • 2004
  • Entering the post genome era with an increasing amount of protein data available in public databases, the study of tertiary structure of pro-teins has been artively in progress. To analyze the structure of a protein effectively, it is necessary to visualize the tertiary structure of a protein. Rececntly, many visualization tools based on Java technology have been developed to visualize a protein whose structure has been known. In this paper, we describe a new protein visualization system, named JProtein. It is designed to be an easy-to-use, platform neutral melocular visualization tool. The JProtein system is developed using Java3D technology. Java3D is an API providing a programming interface for 3D representations. The system informs us the angle and the distance of the interacting atoms in amino acids which are visualized, providing several 3D representation models of a protein molecule. In particular, the JProtein system presents synchronous stereo view as well as asynchronous one.

Utilization of Database in 3D Visualization of Remotely Sensed Data (원격탐사 영상의 3D 시각화와 데이터베이스의 활용)

  • Jung, Myung-Hee;Yun, Eui-Jung
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.45 no.3
    • /
    • pp.40-46
    • /
    • 2008
  • 3D visualization of geological environments using remotely sensed data and the various sources of data provides new methodology to interpret geological observation data and analyze geo-information in earth science applications. It enables to understand spatio-temporal relationships and causal processes in the three-dimension, which would be difficult to identify without 3D representation. To build more realistic geological environments, which are useful to recognize spatial characteristics and relationships of geological objects, 3D modeling, topological analysis, and database should be coupled and taken into consideration for an integrated configuration of the system. In this study, a method for 3D visualization, extraction of geological data, storage and data management using remotely sensed data is proposed with the goal of providing a methodology to utilize dynamic spatio-temporal modeling and simulation in the three-dimension for geoscience and earth science applications.

The Analysis of Chosun Danasty Poetry Using 3D Data Visualization (3D 시각화를 이용한 조선시대 시문 분석)

  • Min, Kyoung-Ju;Lee, Byoung-Chan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.7
    • /
    • pp.861-868
    • /
    • 2021
  • With the development of technology for visualizing big-data, tasks such as intuitively analyzing a lot of data, detecting errors, and deriving meaning are actively progressing. In this paper, we describe the design and implementation of a 3D analysis that collects and stores the writing data in Chinese characters provided by the Korean Classical Database of the Korean Classics Translation Institute, stores and progress the data, and visualizes the writing information in a 3D network diagram. It solves the problem when a large amount of data is expressed in 2D, intuitive that analysis, error detection, meaningful data extraction such as characteristics, similarity, differences, etc. and user convenience can be provided. In this paper, we improved the problems of analyzing Chosun dynasty poetry in Chinese characters using 2D visualization conducted in previous studies.

Integration of 3D Laser Scanner and BIM Process for Visualization of Building Defective Condition (3D 레이저 스캐닝과 BIM 연동을 통한 건축물 노후 상태 정보 시각화 프로세스)

  • Choi, Moonyoung;Kim, Sangyong;Kim, Seungho
    • Journal of the Korea Institute of Building Construction
    • /
    • v.22 no.2
    • /
    • pp.171-182
    • /
    • 2022
  • The regular assessment of a building is important to understand structural safety and latent risk in the early stages of building life cycle. However, methods of traditional assessment are subjective, atypical, labor-intensive, and time-consuming and as such the reliability of these results has been questioned. This study proposed a method to bring accurate results using a 3D laser scanner and integrate them in Building Information Modeling (BIM) to visualize defective condition. The specific process for this study was as follows: (1) semi-automated data acquisition using 3D laser scanner and python script, (2) scan-to-BIM process, (3) integrating and visualizing defective conditions data using dynamo. The method proposed in this study improved efficiency and productivity in a building assessment through omitting the additional process of measurement and documentation. The visualized 3D model allows building facility managers to make more effective decisions. Ultimately, this is expected to improve the efficiency of building maintenance works.

Outdoor Augmented Reality based 3D Model Visualization System of Cultural Heritage Sites (야외 증강현실 기반의 문화 유적지 3D 모델 시각화 시스템)

  • Han, Jong-Gil;Park, Kyoung-Wook;Ban, Kyeong-Jin;Kim, Eung-Kon
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.8 no.3
    • /
    • pp.459-464
    • /
    • 2013
  • Recently, at home and abroad cultural content industry has developed as the growing importance of history. Among them, the reconstruction contents area which combined with IT technology is attracting attention. Specially, using augmented reality technology, 3D visualization researches which restore contents of architectural heritage, cultural heritage sites, and artifacts have been performed in cultural content area. The existing cultural site restore contents are mostly made based on the images taken from indoor. In this paper, efficiently visualize the restore contents in indoor, but outdoors is limited. This theses presents the cultural heritage sites 3D model visualization system using augmented reality in outdoor. Proposed system augments 3D model to cultural heritage site in outdoor by using Smart Phone.

Building a Stereoscopic Display System for 3-D Spatial Data Analysis (3차원 공간 자료 분석을 위한 입체형 시각화 시스템 구축)

  • Lee, Doo-Sung
    • Geophysics and Geophysical Exploration
    • /
    • v.7 no.2
    • /
    • pp.105-108
    • /
    • 2004
  • Immersive virtual reality has been used in areas of oil and gas exploration for visualization and analysis of various spatial data, such as wireline logs, 3-dimensional seismic data volume, formational boundaries, fault, and some other reservoir characteristics. Although virtual reality is a valuable tool in this area, in most cases, it requires a large budget. This paper describes the construction of a single screen, passive stereo, virtual reality, display system based on commodity, or otherwise, low-cost components. The core elements of the system are a PC with a two-channel 3-D graphics, two projects, and a polarized stereo. There are many options available for the major elements of such a system, and the basic system can be modified or adapted to many different styles of use.