• Title/Summary/Keyword: 3D 스캐너

Search Result 370, Processing Time 0.032 seconds

Ultrasound Imaging of Normal Cardiac Structures with Convex Scanner in Puppies (강아지에서 컨벡스스캐너를 이용한 정상적인 심장구조물의 초음파상)

  • Jeong Soon-wuk;Park Hee-myung;Han Sook-hee;Yoon Jung-hee;Han Hong-ryul
    • Journal of Veterinary Clinics
    • /
    • v.11 no.2
    • /
    • pp.529-537
    • /
    • 1994
  • Sector scanner which has a conical end is used to image through the intercostal space because heart is protected by the ribs. Cardiac data published all around the world were also obtained by sector scanner. Although scanners being used in every small animal practice and animal hospital at college in Korea include convex ape and linear type, linear type is not appropriate f3r cardiac scan because of a wide contact surface. The purpose of this study is to establish ultrasonographic images of normal cardiac structures by measuring shape, size of reflectable cardiac structure according to restraint position in scanning normal heart of the puppies with 6.5 MHz convex scanner(SonoAce 4500, Medison, Korea) used in our veterinary teaching hospital, Seoul national university. Seventeen male and female puppies considered having healthy hear by X-ray and clinical examination are used feom April to July 1994. Scanning point selection of probe head and the distinction of imaged cardiac structures were accomplished by necropsy and cardiac scanning performed through thoracotomy under general anesthesia. At 10 o'clock position of transducer(at an angle of 30$^{\circ}$ between imaginary line from elbow joint to 3rd sternum and probe head, 60$^{\circ}$ from body surface, 4th intercostal space of right thorax) with the marker of scanner toward the head of dogs right atrium, left atrium and left ventricle were observed in 2, 3, 4, 5 intercostal space(2cm from the sternum) of experimental dog positioned ventrodorsally under general anesthesia. Under these conditions, the numerical values of imaged diastolic hear are as follows : the distance from skin to apex(mean$\pm$S.D) 47.53$\pm$6.94mm, thickness of left ventricular wall 6.00$\pm$1.60mm, length of left ventricle 16.27$\pm$5.31mm, width of left ventricle 15,33$\pm$4.25mm, length of left atrium 12.33$\pm$3.82mm, width of left atrium 11. 33$\pm$3.94mm, length of right atrium 1.00$\pm$2.41mm, width of right atrium 11.21$\pm$2.76mm and the area of left ventricle 270.92$\pm$109.81mm$^2$, area of left atrium 98.00$\pm$41.08mm$^2$, area of right atrium 62.75$\pm$21.04mm$^2$.

  • PDF

A Novel in Vitro Method for the Metabolism Studies of Radiotracers Using Mouse Liver S9 Fraction (생쥐 간 S9 분획을 이용한 방사성추적자 대사물질의 새로운 체외 측정방법)

  • Ryu, Eun-Kyoung;Choe, Yearn-Seong;Kim, Dong-Hyun;Lee, Sang-Yoon;Choi, Yong;Lee, Kyung-Han;Kim, Byung-Tae
    • The Korean Journal of Nuclear Medicine
    • /
    • v.38 no.4
    • /
    • pp.325-329
    • /
    • 2004
  • Purpose: Usefulness of mouse liver S9 fraction was evaluated for the measurement of the metabolites in the in vitro metabolism study of $^{18}F$-labeled radiotracers. Materials and Methods: Mouse liver S9 fraction was isolated at au early step in the course of microsome preparation. The in vitro metabolism studies were tarried out by incubating a mixture containing the radiotracer, S9 fraction and NADPH at $37^{\ciirc}C$, and an aliquot of the mixture was analyzed at the indicated time points by radio-TLC. Metabolic defluorination was further confirmed by the incubation with calcium phosphate, a bone mimic. Results: The radiotracer $[^{18}F]1$ underwent metabolic defluorination within 15 min, which was consistent with the results of the in vivo method and the in vitro method using microsome. Radiotracer $[^{18}F]2$ was metabolized to three metabolites including $4-[^{18}F]fluorobenzoic$ acid within 60 min. It is likely that the one of these metabolites at the origin of radio-TLC was identical with the one that obtained from the in vivo and in vitro (microsome) method. Compared with the in vitro method using microsome, the method using S9 fraction gave a similar pattern of the metabolites but with a different ratio, which can be explained by the presence of cytosol in the S9 fraction. Conclusion: These results suggest that the findings of the in vitro metabolism studies using S9 fraction can reflect the in vivo metabolism of novel radiotracers in the liver. Moreover, this method can be used as a tool to determine metabolic defluorination along with calcium phosphate absorption method.

A Study on Optical Coherence Tomography System by Using the Optical Fiber (광섬유를 이용한 광영상단층촬영기 제작에 관한 연구)

  • 양승국;박양하;장원석;오상기;이석정;김기문
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.18 no.4
    • /
    • pp.34-40
    • /
    • 2004
  • In this paper, we have studied the OCT(Optical Coherence Tomography) system which has been advantages of high resolution, 2-D cross-sectional images, low cost and small size configuration. The characteristics of light source determine the resolution and coherence length. The light source has a commercial SLD with a central wavelength of 1,285 ill11, 35.3 nm(FWHM). The optical delay line is necessary to make equal with the optical path length to scattered light or reflected light from a sample. In order to make equal the optical path length, the stage that is attached to a reference mirror is controled by a step motor. And the interferometer is configured with the Michelson interferometer by using a single mode fiber, and the scanner can be focused on the sample by using a reference ann Also, the 2-dimension cross-sectional images were measured with scanning the transverse direction of the sample by using a step motor. After detecting the internal signal of lateral direction, a scanner is moved to obtain the cross-sectional image of 2-dimension by using step motor. A photodiode, which has high detection sensitivity and excellent noise characteristics has been used. The detected small signal has a noise and interference. After filtering and amplifying the signal, the output signal is demodulated the waveform And then, a cross-sectional image is seen through converting this signal into a digitalized signal by using an AID converter. The resolution of the sample is about 30${\mu}{\textrm}{m}$, which corresponds to the theoretical resolution. Also, the cross-sectional images of onion cells were measured in real time scheme.

Effects of Attenuation and Scatter Corrections in Cat Brain PET Images Using microPET R4 Scanner (MicroPET R4 스캐너에서 획득한 고양이 뇌 PET 영상의 감쇠 및 산란보정 효과)

  • Kim, Jin-Su;Lee, Jae-Sung;Lee, Jong-Jin;Lee, Byeong-Il;Park, Min-Hyun;Lee, Hyo-Jeong;Oh, Seung-Ha;Kim, Kyeong-Min;Cheon, Gi-Jeong;Lim, Sang-Moo;Chung, June-Key;Lee, Myung-Chul;Lee, Dong-Soo
    • Nuclear Medicine and Molecular Imaging
    • /
    • v.40 no.1
    • /
    • pp.40-47
    • /
    • 2006
  • Purpose: The aim of this study was to examine the effects of attenuation correction (AC) and scatter correction (SC) on the quantification of PET count rates. Materials and Methods: To assess the effects of AC and SC $^{18}F$-FDG PET images of phantom and cat brain were acquired using microPET R4 scanner. Thirty-minute transmission images using $^{68}Ge$ source and emission images after injection of FDG were acquired. PET images were reconstructed using 2D OSEM. AC and SC were applied. Regional count rates were measured using ROIs drawn on cerebral cortex including frontal, parietal, and latral temporal lobes and deep gray matter including head of caudate nucleus, putamen and thalamus for pre- and post-AC and SC images. The count rates were then normalized with the injected dose per body weight. To assess the effects of AC, count ratio of "deep gray matter/cerebral cortex" was calculated. To assess the effects of SC, ROIs were also drawn on the gray matter (GM) and white matter (WM), and contrast between them ((GM-WM)/GM was measured. Results: After the AC, count ratio of "deep gray matter/cerebral cortex" was increased by $17{\pm}7%$. After the SC, contrast was also increased by $12{\pm}3%$. Conclusion: Relative count of deep gray matter and contrast between gray and white matters were increased after AC and SC, suggesting that the AC would be critical for the quantitative analysis of cat brain PET data.

Utilizing Airborne LiDAR Data for Building Extraction and Superstructure Analysis for Modeling (항공 LiDAR 데이터를 이용한 건물추출과 상부구조물 특성분석 및 모델링)

  • Jung, Hyung-Sup;Lim, Sae-Bom;Lee, Dong-Cheon
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.26 no.3
    • /
    • pp.227-239
    • /
    • 2008
  • Processing LiDAR (Light Detection And Ranging) data obtained from ALS (Airborne Laser Scanning) systems mainly involves organization and segmentation of the data for 3D object modeling and mapping purposes. The ALS systems are viable and becoming more mature technology in various applications. ALS technology requires complex integration of optics, opto-mechanics and electronics in the multi-sensor components, Le. data captured from GPS, INS and laser scanner. In this study, digital image processing techniques mainly were implemented to gray level coded image of the LiDAR data for building extraction and superstructures segmentation. One of the advantages to use gray level image is easy to apply various existing digital image processing algorithms. Gridding and quantization of the raw LiDAR data into limited gray level might introduce smoothing effect and loss of the detail information. However, smoothed surface data that are more suitable for surface patch segmentation and modeling could be obtained by the quantization of the height values. The building boundaries were precisely extracted by the robust edge detection operator and regularized with shape constraints. As for segmentation of the roof structures, basically region growing based and gap filling segmentation methods were implemented. The results present that various image processing methods are applicable to extract buildings and to segment surface patches of the superstructures on the roofs. Finally, conceptual methodology for extracting characteristic information to reconstruct roof shapes was proposed. Statistical and geometric properties were utilized to segment and model superstructures. The simulation results show that segmentation of the roof surface patches and modeling were possible with the proposed method.

Nondestructive Diagnosis of NPP Piping System Using Ultrasonic Wave Imaging Technique Based on a Pulsed Laser Scanning System (펄스 레이저 스캐닝 기반 초음파 영상화 기술을 활용한 원전 배관 비파괴 진단)

  • Kim, Hyun-Uk;Lee, Chang-Gil;Park, Seung-Hee
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.1
    • /
    • pp.166-173
    • /
    • 2014
  • A noncontact nondestructive testing (NDT) method is proposed to detect the damage of pipeline structures and to identify the location of the damage. To achieve this goal, a scanning laser source actuation technique is utilized to generate a guided wave and scans a specific area to find damage location more precisely. The ND: YAG pulsed laser is used to generate Lamb wave and a piezoelectric sensor is installed to measure the structural responses. The measured responses are analyzed using three dimensional Fourier transformation (3DFT). The damage-sensitive features are extracted by wavenumber filtering based on the 3D FT. Then, flaw imaging techniques of a pipeline structures is conducted using the damage-sensitive features. Finally, the pipes with notches are investigated to verify the effectiveness and the robustness of the proposed NDT approach.

Diagnosis of tooth wear (치아마모의 진단)

  • Lee, Hyeseon;Ko, Kyung-Ho;Huh, Yoon-Hyuk;Park, Chan-Jin;Cho, Lee-Ra
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.35 no.3
    • /
    • pp.113-122
    • /
    • 2019
  • Tooth wear is gradually increasing with increasing life expectancy. In particular, it is important to establish a treatment plan in the early stages so that it does not proceed to moderate or severe wear stages. It is essential to diagnose tooth wear accurately in order to plan a treatment for it. There are many risk factors including age, diet, and drugs which affects tooth wear. For the diagnosis of a tooth wear, appropriate index and evaluation method should be used. There were various tooth wear indices such as TWI, Lussi index, BEWE, and TWES. The evaluation method includes clinical examination, dental cast examination and clinical photographs. Recently, a 3D scanner is being used to assess tooth wear. The risk factors, tooth wear evaluation system, the methods of measuring tooth wear, and related literature were reviewed. The strengths and weaknesses of each index and evaluation methods were compared to derive a proper way to diagnose tooth wear.

Study on Applicability of Asymmetry V-Cut method in Underground Mine (비대칭 V-cut의 갱내 광산에 대한 적용성 연구)

  • Kim, Jung-Gyu;Jung, Seung-Won;Kim, Jun-Ha;Kim, Jong-Gwan
    • Tunnel and Underground Space
    • /
    • v.31 no.6
    • /
    • pp.520-533
    • /
    • 2021
  • It is necessary to increase the blasting efficiency in order to minimize the economic loss caused when the excavation cross section is reduced due to the stability problem of underground mining development, and for this, a new blasting design is proposed. In this study, the blasting efficiency of the general design in the field, the suggestion designI, which added two columns to production blasting, and the suggestion design II, which added one column to create asymmetry, is compared. Advance rate and fragmentation were selected as the evaluation index of the blasting efficiency. In the case of advance rate, compared to the normal, the suggestionI improved by 6.07% and the suggestionII improved by 4.65%. In the case of fragmentation, based on P80, compared to the normal, the suggestionI reduced about 58% and the suggestionII was about 47%. Accoording to the evaluation index, the suggestion designI shows better blasting efficiency than the suggestion designII. But considering the additional work time and cost required for the suggestion designI due to the insignificant difference in the evaluation index results, the asymmetry V-cut, the suggestion designII, is judged to be a more suitable blasting design for the site.

Principle and Recent Advances of Neuroactivation Study (신경 활성화 연구의 원리와 최근 동향)

  • Kang, Eun-Joo
    • Nuclear Medicine and Molecular Imaging
    • /
    • v.41 no.2
    • /
    • pp.172-180
    • /
    • 2007
  • Among the nuclear medicine imaging methods available today, $H_2^{15}O-PET$ is most widely used by cognitive neuroscientists to examine regional brain function via the measurement of regional cerebral blood flow (rCBF). The short half-life of the radioactively labeled probe, $^{15}O$, often allows repeated measures from the same subjects in many different task conditions. $H_2^{15}O-$ PET, however, has technical limitations relative to other methods of functional neuroimaging, e.g., fMRI, including relatively poor time and spatial resolutions, and, frequently, insufficient statistical power for analysis of individual subjects. However, recent technical developments, such as the 3-D acquisition method provide relatively good image quality with a smaller radioactive dosage, which in turn results in more PET scans from each individual, thus providing sufficient statistical power for the analysis of individual subject's data. Furthermore, the noise free scanner environment $H_2^{15}O$ PET, along with discrete acquisition of data for each task condition, are important advantages of PET over other functional imaging methods regarding studying state-dependent changes in brain activity. This review presents both the limitations and advantages of $^{15}O-PET$, and outlines the design of efficient PET protocols, using examples of recent PET studies both in the normal healthy population, and in the clinical population.

Effect of machining precision of single ceramic restorations on the marginal and internal fit (단일 도재 수복물의 가공 정밀도가 변연 및 내면 적합도에 미치는 영향)

  • Son, Keunbada;Yu, Beom-Young;Lee, Kyu-Bok
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.58 no.4
    • /
    • pp.313-320
    • /
    • 2020
  • Purpose: The purpose of this study was to evaluate the machining precision and the marginal and internal fit of single restorations fabricated with three types of lithium disilicate ceramic blocks and to evaluate the correlation. Materials and methods: Single restorations were designed using a CAD software program. The crown designed model file was extracted from the CAD software program. Three types of lithium disilicate blocks (Rosetta; HASS, IPS e.max CAD; Ivoclar vivadent, VITA Suprinity; VITA) were milled using a milling machine. For the fabrication of the crown scanned model file, the intaglio surface of the restoration was digitized using a contact scanner. Then, using the three-dimensional inspection software (Geomagic control X; 3D Systems), the process of the overlap of the crown designed model and the scanned model and 3-dimensional analysis was conducted. In addition, the marginal and internal fit of the crowns was evaluated by a silicone replication method. The difference among three types of single ceramic crown was analyzed using a Kruskal-Wallis H test, and Spearman correlation analysis was performed to analyze the correlation between machining precision and fitness (α=.05). Results: There was a significant difference in the machining precision and the marginal and internal fit according to the type of ceramic block (P<.001). In addition, the machining precision and the marginal and internal fit were positively correlated (P<.001). Conclusion: The marginal fit of crowns fabricated according to the types of ceramic blocks was within the clinically acceptable range (< 120 ㎛), so it can be regarded as appropriate machining precision applicable to all clinical as aspects in terms of the marginal fit.