• 제목/요약/키워드: 3C-SiC films

검색결과 1,243건 처리시간 0.031초

Substrate Temperature Dependence of Microcrystalline Silicon Thin Films by Combinatorial CVD Deposition

  • Kim, Yeonwon
    • 한국표면공학회지
    • /
    • 제48권3호
    • /
    • pp.126-130
    • /
    • 2015
  • A high-pressure depletion method using plasma chemical vapor deposition (CVD) is often used to deposit hydrogenated microcrystalline silicon (${\mu}c-Si:H$) films of a low defect density at a high deposition rate. To understand proper deposition conditions of ${\mu}c-Si:H$ films for a high-pressure depletion method, Si films were deposited in a combinatorial way using a multi-hollow discharge plasma CVD method. In this paper the substrate temperature dependence of ${\mu}c-Si:H$ film properties are demonstrated. The higher substrate temperature brings about the higher deposition rate, and the process window of device quality ${\mu}c-Si:H$ films becomes wider until $200^{\circ}C$. This is attributed to competitive reactions between Si etching by H atoms and Si deposition.

CVD로 성장된 다결정 3C-SiC 박막의 라만특성 (Raman Scattering Investigation of Polycrystalline 3C-SiC Thin Films Deposited on $SiO_2$ by APCVD using HMDS)

  • 윤규형;정귀상
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2009년도 하계학술대회 논문집
    • /
    • pp.197-198
    • /
    • 2009
  • This paper describes the Raman scattering characteristics of polycrystalline (poly) 3C-SiC films, which were deposited on the thermally oxidized Si(100) substrate by the atmosphere pressure chemical vapor deposition (APCVD) method according to growth temperature. TO and LO phonon modes to 2.0m thick poly 3C-SiC deposited at $1180^{\circ}C$ were measured at 794.4 and $965.7\;cm^{-1}$ respectively. From the intensity ratio of $I_{(LO)}/I_{(TO)}$ 1.0 and the broad full width half maximum (FWHM) of TO modes, itcan be elucidated that the crystallinity of 3C-SiC forms polycrystal instead of disordered crystal and the crystal defect is small. At the interface between 3C-SiC and $SiO_2$, $1122.6\;cm^{-1}$ related to C-O bonding was measured. Here poly 3C-SiC admixes with nanoparticle graphite with the Raman shifts of D and G bands of C-C bonding 1355.8 and $1596.8\;cm^{-1}$. Using TO mode of 2.0 m thick poly 3C-SiC, the biaxial stress was calculated as 428 MPa.

  • PDF

초음파 분무 MOCVD법에 의한 PbTiO$_3$박막의 제조 및 특성 (Preparation and properties of PbTiO$_3$thin films by MOCVD using ultrasonic spraying)

  • 이진홍;김용환;이상희;박병옥
    • 한국결정성장학회지
    • /
    • 제10권3호
    • /
    • pp.205-210
    • /
    • 2000
  • 초음파분무를 이용한 MOCVD법으로 강유전체 $PbTiO_3$박막을 Si(100) wafer와 ITO-coated glass위에 제조하였다 Si 기판 위에 증착된 박막으로부터, 출발원료의 농도비(Ti/Pb)가 1.2일 때, 단일 perovskite 상을 얻을 수 있었다. ITO-coated glass 위에 증착된 박막은 Si기판 위에 제조된 박막보다 박막의 성장속도가 더 빠르며, 기판온도를 $530^{\circ}C$부터 $570^{\circ}C$까지 증가시켰을 때, 결절성과 입자 크기의 증가에 의해 유전상수는 증가하였다. $570^{\circ}C$에서의 유전상수 및 유전손실 값은 각각 205, 0.016을 나타내었다. 기판온도가 $600^{\circ}C$ 이상인 경우, 유전상수가 감소되는 경향을 보였다.

  • PDF

Influence of Carbonization Conditions in Hydrogen Poor Ambient Conditions on the Growth of 3C-SiC Thin Films by Chemical Vapor Deposition with a Single-Source Precursor of Hexamethyldisilane

  • Kim, Kang-San;Chung, Gwiy-Sang
    • 센서학회지
    • /
    • 제22권3호
    • /
    • pp.175-180
    • /
    • 2013
  • This paper describes the characteristics of cubic silicon carbide (3C-SiC) films grown on a carbonized Si(100) substrate, using hexamethyldisilane (HMDS, $Si_2(CH_3)_6$) as a safe organosilane single precursor in a nonflammable $H_2$/Ar ($H_2$ in Ar) mixture carrier gas by atmospheric pressure chemical vapor deposition (APCVD) at $1280^{\circ}C$. The growth process was performed under various conditions to determine the optimized growth and carbonization condition. Under the optimized condition, grown film has a single crystalline 3C-SiC with well crystallinity, small voids, low residual stress, low carrier concentration, and low RMS. Therefore, the 3C-SiC film on the carbonized Si (100) substrate is suitable to power device and MEMS fields.

ICPCVD방법에 의한 나노기공을 갖는 Si-O-C 박막의 형성에 관한 연구 (A study on the structure of Si-O-C thin films with films size pore by ICPCVD)

  • Oh, Teresa
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2002년도 추계종합학술대회
    • /
    • pp.477-480
    • /
    • 2002
  • ULSI(ultra large scaled integrated circuits)의 고집적화와 고속화를 위한 다층 배선 기술 중에서 층간 절연막의 특성을 향상시켜주는 것은 매우 중요한 요소이다. 소자의 소형화에 따른 절연층의 용량에 의한 신호의 지연을 방지하고 금속배선간의 상호간섭을 막아주기 위해서 현재 요구되는 0.13$\mu\textrm{m}$급 소자의 경우에서는 유전율이 매우 낮은 k$\leq$2.0인 층간 절연막이 필요하게 된다. 이러한 차세대 반도체 소자의 층간 절연물질로서 사용될 유력한 저유전 물질로 Nanoporous silica(k=1.3~2.5)를 적용하려는 연구가 진행되고 있다(1)-(3). 그러한 물질 중에 하나가 organosilicate films이 있는데 carbon-doped oxides, silicon-oxicarbides, carbon-incorporated silicon oxide film, organic-inorganic hybrid type Si-O-C thin films 혹은 organic-inorganic hybrid silica materials 등으로 불린다. 이에 본 연구에서는 nano-pore를 갖는 유무기 하이브리드 구조의 저유전 박막을 BTMSM/O$_2$의 혼합된 precursor를 사용하여 ICPCVD 방법에 의해 형성하였다. 총 유량을 20sccm이 되도록 하여 $O_2$:BTMSM(Ar)의 유량비를 변화시키며, 작업진공도는 300mTorr였다. 기판은 가열하지 않고, p-type Si(100) 위에 Si-O-C-H 박막을 형성하였다. 열적안정성을 조사하기 위하여 30$0^{\circ}C$, 40$0^{\circ}C$, 50$0^{\circ}C$에서 30분간 열처리하여 비교 분석하였다. 형성된 박막의 특성은 XPS로 분석하여 유전상수와의 상관관계를 조사하였다.

  • PDF

TiW 박막을 이용한 극한 환경 MEMS용 3C-SiC의 Ohmic contact 형성 (Ohmic Contact Formation of SiC for Harsh Environment MEMS Using a TiW Thin-film)

  • 정수용;노상수;정귀상
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2004년도 춘계학술대회 논문집 반도체 재료 센서 박막재료 전자세라믹스
    • /
    • pp.133-136
    • /
    • 2004
  • In this study, the characteristics of 3C-SiC ohmic contact were investigated. Titanium-tungsten(TiW) films were used for contact metalization. The ohmic contact resistivity between 3C-SiC and TiW was measured by HP4155 and then calculated with the circular transmission line method(C-TLM). And also the physical properties of TiW and the interface between TiW and 3C-SiC were analyzed using XRD and AES. TiW films make a good role of a diffusion barrier and their contact properties with 3C-SiC are stable at high temperature.

  • PDF

가스흐름 제어에 의한 균일한 다결정 3C-SiC 박막 성장 (The uniform polycrystalline 3C-SiC thin film growth by the gas flow control)

  • 윤규형;정귀상
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2008년도 추계학술대회 논문집 Vol.21
    • /
    • pp.92-92
    • /
    • 2008
  • The surface flatness of heteroepitaxially grown 3C-SiC thin films is a key factor affecting electronic and mechanical device applications. This paper describes the surface flatness of polycrystalline 3C-SiC thin films by the gas flow control according to the location change of geometric structure. The polycrystalline 3C-SiC thin film was deposited by APCVD(Atmospheric pressure chemical vapor deposition) at $1200^{\circ}C$ using HMDS(Hexamethyildisilane : $Si_2(CH_3)_6)$ as single precursor, and 5 slm Ar as the main flow gas. According to the location of geometric structure, surface fringes and flatness changed. It shows the distribution of thickness is formed uniformly in the specific location of the geometric structure.

  • PDF

졸-겔법으로 Pt/Ti/SiO2/Si 기판위에 제작된 (Bi,La)Ti3O12 강유전체 박막의 특성 연구 (Charaterization of (Bi,La)Ti3O12 Ferroelectric Thin Films on Pt/Ti/SiO2/Si Substrates by sol-gel Method)

  • 황선환;장호정
    • 한국재료학회지
    • /
    • 제12권11호
    • /
    • pp.835-839
    • /
    • 2002
  • Metal-Ferroelectric-Metal(MFM) capacitors were prepared using $Bi_{3.3}$ $La_{0.7}$ $Ti_3$$O_{12}$ (BLT) ferroelectric thin films which were spin coated on $Pt/Ti/SiO_2$/Si substrates by the Sol-Gel method. BLT thin films annealed at above $650^{\circ}C$ showed polycrystalline structures with typical c-axis preferred orientation. The grain size and surface roughness were increased as the annealing temperature increased from $650^{\circ}C$ to $700^{\circ}C$. In addition, the full width at half maximum (FWHM) values were decreased with increasing annealing temperatures, indicating the improvement of crystallinity. The remanent polarization (2Pr= $Pr^{+}$ $+Pr^{-) }$ and leakage current of the BLT film annealed at $650^{\circ}C$ were about 29.3 $\mu$C/cm$^2$ and $2.3$\times$10^{-8}$$ A/cm^2$ at 3V. There were no distinct changes in the retention charges after $10^{10}$ polarization switching cycles, showing good fatigue property of the annealed BLT films.

$MgB_2$ Thin Films on SiC Buffer Layers with Enhanced Critical Current Density at High Magnetic Fields

  • Putri, W.B.K.;Tran, D.H.;Kang, B.;Lee, N.H.;Kang, W.N.
    • Progress in Superconductivity
    • /
    • 제14권1호
    • /
    • pp.30-33
    • /
    • 2012
  • We have grown $MgB_2$ superconducting thin films on the SiC buffer layers by means of hybrid physical-chemical vapor deposition (HPCVD) technique. Prior to that, SiC was first deposited on $Al_2O_3$ substrates at various temperatures from room temperature to $600^{\circ}C$ by using the pulsed laser deposition (PLD) method in a vacuum atmosphere of ${\sim}10^{-6}$ Torr pressure. All samples showed a high transition temperature of ~40 K. The grain boundaries of $MgB_2$ samples with SiC layer are greater in amount, compare to that of the pure $MgB_2$ samples. $MgB_2$ with SiC buffer layer samples show interesting change in the critical current density ($J_c$) values. Generally, at both 5 K and 20 K measurements, at lower magnetic field, all $MgB_2$ films deposited on SiC buffer layers have low $J_c$ values, but when they reach higher magnetic fields of nearly 3.5 Tesla, $J_c$ values are enhanced. $MgB_2$ film with SiC grown at $600^{\circ}C$ has the highest $J_c$ enhancement at higher magnetic fields, while all SiC buffer layer samples exhibit higher $J_c$ values than that of the pure $MgB_2$ films. A change in the grain boundary morphologies of $MgB_2$ films due to SiC buffer layer seems to be responsible for $J_c$ enhancements at high magnetic fields.

Fracture toughness of amorphus SiC thin films using nanoindentation and simulation

  • Mamun, M.A.;Elmustafa, A.A.
    • Advances in materials Research
    • /
    • 제9권1호
    • /
    • pp.49-62
    • /
    • 2020
  • Fracture toughness of SiC on Si thin films of thicknesses of 150, 750, and 1500 nm were measured using Agilent XP nanoindenter equipped with a Dynamic Control Module (DCM) in Load Control (LC) and Continuous Stiffness Method (CSM) protocols. The fracture toughness of the Si substrate is also measured. Nanovision images implied that indentations into the films and well deep into the Si caused cracks to initiate at the Si substrate and propagate upward to the films. The composite fracture toughness of the SiC/Si was measured and the fracture toughness of the SiC films was determined based on models that estimate film properties from substrate properties. The composite hardness and modulus of the SiC films were measured as well. For the DCM, the hardness decreases from an average of 35 GPa to an average of 13 GPa as the film thick increases from 150 nm to 1500 nm. The hardness and moduli of the films depict the hardness and modulus of Si at deep indents of 12 and 200 GPa respectively, which correlate well with literature hardness and modulus values of Si. The fracture toughness values of the films were reported as 3.2 MPa√m.