• Title/Summary/Keyword: 32H10

Search Result 4,051, Processing Time 0.037 seconds

Standardization and HPTLC Fingerprinting of a Polyherbal Unani Formulation

  • Beg, Mirza Belal;Viquar, Uzma;Naikodi, Mohammad Abdul Rasheed;Suhail, Habiba;Kazmi, Munawwar Husain
    • CELLMED
    • /
    • v.11 no.1
    • /
    • pp.4.1-4.8
    • /
    • 2021
  • Background: The Unani system of medicine has been practised since centuries for the treatment of a range of diseases. In spite of their efficacy they have been widely criticised due to the lack of standardization and poor quality control. Standardization of Unani medicine is a valuable issue at the present because they are very prone to contamination, deterioration, adulteration and variation in composition due to biodiversity as well as careless collection. Objective: To Standardize and Development of HPTLC Fingerprinting of a polyherbal Unani formulation Qurs-e-Safa. Materials and methods: The conventional and modern analytical techniques were used to standardise Qurs-e-Safa. The study was carried into three different batches of Qurs-e-Safa prepared with its ingredients. The parameters studied are organoleptic, microscopic, physicochemical parameters, phytochemical screening, TLC, HPTLC profile, aflatoxin, microbial load and heavy metal analysis. Results and conclusion: Qurṣ-e-Sa'fa is dark yellow in colour and aromatic smell. Uniformity of diameter and weight variation were found to be 13 ± 0, and 524.7 ± 1.72 mg. friability, hardness and disintegration time of all 3 batches were found to be (0.0615 ± 0.004, 0.0885 ± 0.0047 and 0.0725 ± 0.0058), (3.5 ± 0.2886, 3.67 ± 0.1674 and 3.67 ± 0.1674) and (16 to 17 minutes). Extractive value were found to be maximum in distilled water (38.488 ± 0.20, 37.3824 ± 0.38 and 39.8177 ± 0.13) followed by alcohol (27.5406 ± 0.54, 27.5656 ± 0.32 and 26.9229 ± 0.25). Loss of weight on drying, pH, total ash, acid insoluble ash, qualitative test was set in. Phytochemical screening revealed the presence of Carbohydrates, Phenols, Resins, Proteins, Steroids, fixed oil and Flavonoids. The microbial load was found absent and heavy metals were within permissible limits. The data evolved from the study may serve as a reference to validate and also help in the quality control of other finished products in future research.

Rapid separation of Capsicum annuum L. leaf extract using automated HPLC/SPE/HPLC coupling system (Sepbox system) and identification of α-glucosidase inhibitory active substances (자동화 HPLC/SPE/HPLC 시스템(Sepbox system)을 활용한 고추 잎 (leaf of Capsicum annuum L.) 추출물 분리 및 α-glucosidase 억제 활성 물질 탐색)

  • Kim, Min-Seon;Jin, Jong Beom;Lee, Jung Hwan;An, Hye Suck;Pan, Cheol-Ho;Park, Jin-Soo
    • Journal of Applied Biological Chemistry
    • /
    • v.64 no.1
    • /
    • pp.25-32
    • /
    • 2021
  • Phytochemicals include plant-derived natural products that promote and improve the human metabolism and physiological activity, and there is a lot of research to find the value of the molecules is in progress. Likewise, we obtained 288 fractions of Capsicum annuum L. extract in less than 20 h using HPLC/SPE/HPLC coupling experiment through Sepbox system, an effective separation system to search for active substances in natural resources and ensure efficacy and reliability. Therefore, this experiment allowed rapid identification of biologically active molecules from the extract compared to traditional separation processes. Of the above fractions, eight fractions showed the α-glucosidase inhibitory (AGI) activity and subsequent LC-MS analysis revealed one of the active molecules as luteolin 7-O-glucoside. In addition, we proved the increase in AGI activity according to deglycosylation of flavonoid glycoside. Therefore, this study suggests that the Sepbox system can quickly separate and identify active components from plant extract, and is an effective technique for finding new active substances.

Half-castration is a newly effective method for increasing yield and tenderness of male cattle meat

  • Hoa, Van-Ba;Song, Dong-Heon;Seol, Kuk-Hwan;Kang, Sun-Moon;Kim, Hyun-Wook;Jang, Sun-Sik;Cho, Soo-Hyun
    • Animal Bioscience
    • /
    • v.35 no.8
    • /
    • pp.1258-1269
    • /
    • 2022
  • Objective: For improving meat quality especially tenderness, male cattle are usually castrated to removes both the testicles. This study was conducted to evaluate the effect castration method (half- and complete-castration) on meat yield and quality characteristics of Hanwoo male cattle. Methods: Thirty-two similar age (5.9 months) Hanwoo male calves were divided into: half-castration (HC) and complete-castration (CC) groups (n = 16 per group). At 7 months of age, all the animals were castrated in which the HC calves had only one testicle surgically removed while, the CC calves had both testicles surgically removed. The castrated animals were reared under identical conditions until 25 months of age. After slaughter, the carcasses were evaluated for carcass traits and meat yield of primal cuts. For examination of the castration effect on meat quality, L. lumborum and semimembranosus muscles were used. The meat samples were analyzed for chemical composition, color, pH, shear force and water holding capacity, fatty acids, metabolites and volatile aroma compounds. Results: The HC group showed higher meat yields of all primal cuts (p<0.05). As a result, the total meat yield was higher by approximately 44 kg in the HC group (303.32 kg, corresponding to 67.88%) compared to the CC group (259.30 kg, corresponding to 62.11%) (p<0.05). In terms of meat quality, the HC resulted in two times greater fat content in both muscles examined compared to intact males. More importantly, the shear force values did not differ between HC and CC groups for L. lumborum muscles (p>0.05). The meat from HC animals exhibited higher amount of free amino acids associated with sweetness (p<0.05). Furthermore, the castration method only exhibited a negligible effect on metabolites and volatile aroma compounds in the cooked meat. Conclusion: Half-castration emerged as an alternative practice to be used for increasing the yield and tenderness of male cattle meat.

Autonomic Nerve Change after Loess Bedding Radiating Far-infrared ray and energy (원적외선에너지 방출 황토침구 사용 후의 자율신경 변화에 대한 연구)

  • Lee, Ku Yeon;Lee, Hyung H.;Hahm, Suk Chan
    • Journal of Naturopathy
    • /
    • v.9 no.1
    • /
    • pp.27-32
    • /
    • 2020
  • Purpose: The purpose of this study was to investigate the changes in the autonomic nervous system of the human body after the use of ocher bedding radiating far-infrared rays to 15 insomnia subjects. Methods: Changes of autonomous nerve in the subjects after using loess bedding estimated by heart rate variability. Results: The mean HF before the use of ocher bedding was 220.8 msec2, and the mean after use decreased to 5.1 msec2. The average value of LF before use was 418.1 msec2, and the mean after use decreased to 5.2 msec2. The average before use of the VLF was 1463.3 msec2, and the average after use dropped to 6.8 msec2. The average value of TP before use was 977.3 msec2, and the average after use dropped to 6.7 msec2. The decrease in postoperative values of all four items was statistically significant, and the high value of the subjects before use inferred to be the reason that all of the subjects had high stress and anxiety due to their long-term sleep disorder. There was no significant difference in the pulses of the subjects before the use of the bedding. SDNN and RMSSD were not significantly different before and after use. Conclusions: Autonomic nerves HF, LF, VLF, TP frequency is evaluated to be affected by the investigation of far-infrared radiation that occurs ocher. This research data regarded as high value as primary data in this field.

Molecular Cloning and Characterization of a Novel Exo-β-1,3-Galactanase from Penicillium oxalicum sp. 68

  • Zhou, Tong;Hu, Yanbo;Yan, Xuecui;Cui, Jing;Wang, Yibing;Luo, Feng;Yuan, Ye;Yu, Zhenxiang;Zhou, Yifa
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.8
    • /
    • pp.1064-1071
    • /
    • 2022
  • Arabinogalactans have diverse biological properties and can be used as pharmaceutical agents. Most arabinogalactans are composed of β-(1→3)-galactan, so it is particularly important to identify β-1,3-galactanases that can selectively degrade them. In this study, a novel exo-β-1,3-galactanase, named PoGal3, was screened from Penicillium oxalicum sp. 68, and hetero-expressed in P. pastoris GS115 as a soluble protein. PoGal3 belongs to glycoside hydrolase family 43 (GH43) and has a 1,356-bp gene length that encodes 451 amino acids residues. To study the enzymatic properties and substrate selectivity of PoGal3, β-1,3-galactan (AG-P-I) from larch wood arabinogalactan (LWAG) was prepared and characterized by HPLC and NMR. Using AG-P-I as substrate, purified PoGal3 exhibited an optimal pH of 5.0 and temperature of 40℃. We also discovered that Zn2+ had the strongest promoting effect on enzyme activity, increasing it by 28.6%. Substrate specificity suggests that PoGal3 functions as an exo-β-1,3-galactanase, with its greatest catalytic activity observed on AG-P-I. Hydrolytic products of AG-P-I are mainly composed of galactose and β-1,6-galactobiose. In addition, PoGal3 can catalyze hydrolysis of LWAG to produce galacto-oligomers. PoGal3 is the first enzyme identified as an exo-β-1,3-galactanase that can be used in building glycan blocks of crucial glycoconjugates to assess their biological functions.

Dynamic of heat production partitioning in rooster by indirect calorimetry

  • Rony Lizana, Riveros;Rosiane, de Sousa Camargos;Marcos, Macari;Matheus, de Paula Reis;Bruno Balbino, Leme;Nilva Kazue, Sakomura
    • Animal Bioscience
    • /
    • v.36 no.1
    • /
    • pp.75-83
    • /
    • 2023
  • Objective: The objective of this study was to describe a methodological procedure to quantify the heat production (HP) partitioning in basal metabolism or fasting heat production (FHP), heat production due to physical activity (HPA), and the thermic effect of feeding (TEF) in roosters. Methods: Eighteen 54-wk-old Hy Line Brown roosters (2.916±0.15 kg) were allocated in an open-circuit chamber of respirometry for O2 consumption (VO2), CO2 production (VCO2), and physical activity (PA) measurements, under environmental comfort conditions, following the protocol: adaptation (3 d), ad libitum feeding (1 d), and fasting conditions (1 d). The Brouwer equation was used to calculate the HP from VO2 and VCO2. The plateau-FHP (parameter L) was estimated through the broken line model: HP = U×(R-t)×I+L; I = 1 if t<R or I = 0 if t>R; Where the broken-point (R) was assigned as the time (t) that defined the difference between a short and long fasting period, I is conditional, and U is the decreasing rate after the feed was withdrawn. The HP components description was characterized by three events: ad libitum feeding and short and long fasting periods. Linear regression was adjusted between physical activity (PA) and HP to determine the HPA and to estimate the standardized FHP (st-FHP) as the intercept of PA = 0. Results: The time when plateau-FHP was reached at 11.7 h after withdrawal feed, with a mean value of 386 kJ/kg0.75/d, differing in 32 kJ from st-FHP (354 kJ/kg0.75/d). The slope of HP per unit of PA was 4.52 kJ/mV. The total HP in roosters partitioned into the st-FHP, termal effect of feeding (TEF), and HPA was 56.6%, 25.7%, and 17.7%, respectively. Conclusion: The FHP represents the largest fraction of energy expenditure in roosters, followed by the TEF. Furthermore, the PA increased the variation of HP measurements.

Evaluation of Strength and Deformability of a Friction Material Based on True Triaxial Compression Tests (진삼축압축시험을 통한 마찰재료의 강도 및 변형 특성 평가)

  • Bae, Junbong;Um, Jeong-Gi;Jeong, Hoyoung
    • The Journal of Engineering Geology
    • /
    • v.32 no.4
    • /
    • pp.597-610
    • /
    • 2022
  • Knowledge of the failure behavior of friction materials considering their intermediate principal stress is related to an understanding of situations where these materials might be used: for example, the stability of deep-seated boreholes and fault slip analysis. This study designed equipment for physically implementing true triaxial compression and used it to assess specimens of plaster, a friction material. The material's mechanical behaviors are discussed based on the results. The applicability of the 3D failure criteria are also reviewed. The tested specimens were molded cuboids of width, length, and height 52, 52, and 104 mm, respectively. A total of 24 true triaxial compression tests were performed under various combinations of 𝜎3 and 𝜎2 conditions. Conventional uniaxial and triaxial compression tests were employed to estimate the mechanical properties of the plaster for use as parameters for 3D failure criteria. Examining the stress-strain relations of the plaster materials showed that a large difference between the intermediate principal stress and the minimum principal stress indicated strong brittle behavior. The mechanical behavior of the plaster used here reflects the change of intermediate principal stress. Nonlinear multiple regression analysis on the test data in the principal space showed that the modified Wiebols-Cook failure criterion and the modified Lade failure criterion were the most suitable 3D failure criteria for the tested plaster.

Development of a polystyrene phantom for quality assurance of a Gamma Knife®

  • Yona Choi;Kook Jin Chun;Jungbae Bahng;Sang Hyoun Choi;Gyu Seok Cho;Tae Hoon Kim;Hye Jeong Yang;Yeong Chan Seo;Hyun-Tai Chung
    • Nuclear Engineering and Technology
    • /
    • v.55 no.8
    • /
    • pp.2935-2940
    • /
    • 2023
  • A polystyrene phantom was developed following the guidance of the International Atomic Energy Association (IAEA) for gamma knife (GK) quality assurance. Its performance was assessed by measuring the absorbed dose rate to water and dose distributions. The phantom was made of polystyrene, which has an electron density (1.0156) similar to that of water. The phantom included one outer phantom and four inner phantoms. Two inner phantoms held PTW T31010 and Exradin A16 ion chambers. One inner phantom held a film in the XY plane of the Leksell coordinate system, and another inner phantom held a film in the YZ or ZX planes. The absorbed dose rate to water and beam profiles of the machine-specific reference (msr) field, namely, the 16 mm collimator field of a GK PerfexionTM or IconTM, were measured at seven GK sites. The measured results were compared to those of an IAEA-recommended solid water (SW) phantom. The radius of the polystyrene phantom was determined to be 7.88 cm by converting the electron density of the plastic, considering a water depth of 8 g/cm2. The absorbed dose rates to water measured in both phantoms differed from the treatment planning program by less than 1.1%. Before msr correction, the PTW T31010 dose rates (PTW Freiberg GmbH, New York, NY, USA) in the polystyrene phantom were 0.70 (0.29)% higher on average than those in the SW phantom. The Exradin A16 (Standard Imaging, Middleton, WI, USA) dose rates were 0.76 (0.32)% higher in the polystyrene phantom. After msr correction factors were applied, there were no statistically significant differences in the A16 dose rates measured in the two phantoms; however, the T31010 dose rates were 0.72 (0.29)% higher in the polystyrene phantom. When the full widths at half maximum and penumbras of the msr field were compared, no significant differences between the two phantoms were observed, except for the penumbra in the Y-axis. However, the difference in the penumbra was smaller than variations among different sites. A polystyrene phantom developed for gamma knife dosimetry showed dosimetric performance comparable to that of a commercial SW phantom. In addition to its cost effectiveness, the polystyrene phantom removes air space around the detector. Additional simulations of the msr correction factors of the polystyrene phantom should be performed.

Aromadendrin Inhibits Lipopolysaccharide-Induced Inflammation in BEAS-2B Cells and Lungs of Mice

  • Juhyun Lee;Ji-Won Park;Jinseon Choi;Seok Han Yun;Bong Hyo Rhee;Hyeon Jeong Jeong;Hyueyun Kim;Kihoon Lee;Kyung-Seop Ahn;Hye-Gwang Jeong;Jae-Won Lee
    • Biomolecules & Therapeutics
    • /
    • v.32 no.5
    • /
    • pp.546-555
    • /
    • 2024
  • Aromadendrin is a phenolic compound with various biological effects such as anti-inflammatory properties. However, its protective effects against acute lung injury (ALI) remain unclear. Therefore, this study aimed to explore the ameliorative effects of aromadendrin in an experimental model of lipopolysaccharide (LPS)-induced ALI. In vitro analysis revealed a notable increase in the levels of cytokine/chemokine formation, nuclear factor kappa B (NF-κB) activation, and myeloid differentiation primary response 88 (MyD88)/toll-like receptor (TLR4) expression in LPS-stimulated BEAS-2B lung epithelial cell lines that was ameliorated by aromadendrin pretreatment. In LPS-induced ALI mice, the remarkable upregulation of immune cells and IL-1β/IL-6/TNF-α levels in the bronchoalveolar lavage fluid and inducible nitric oxide synthase/cyclooxygenase-2/CD68 expression in lung was decreased by the oral administration of aromadendrin. Histological analysis revealed the presence of cells in the lungs of ALI mice, which was alleviated by aromadendrin. In addition, aromadendrin ameliorated lung edema. This in vivo effect of aromadendrin was accompanied by its inhibitory effect on LPS-induced NF-κB activation, MyD88/TLR4 expression, and signal transducer and activator of transcription 3 activation. Furthermore, aromadendrin increased the expression of heme oxygenase-1/ NAD(P)H quinone dehydrogenase 1 in the lungs of ALI mice. In summary, the in vitro and in vivo studies demonstrated that aromadendrin ameliorated endotoxin-induced pulmonary inflammation by suppressing cytokine formation and NF-κB activation, suggesting that aromadendrin could be a useful adjuvant in the treatment of ALI.

Development of simulation model of an electric all-wheel-drive vehicle for agricultural work

  • Min Jong Park;Hyeon Ho Jeon;Seung Yun Baek;Seung Min Baek;Dong Il Kang;Seung Jin Ma;Yong Joo Kim
    • Korean Journal of Agricultural Science
    • /
    • v.51 no.3
    • /
    • pp.315-329
    • /
    • 2024
  • This study was conducted for simulation model development of an electric all-wheel-drive vehicle to adapt the agricultural machinery. Data measurement system was installed on a four-wheel electric driven vehicle using proximity sensor, torque-meter, global positioning system (GPS) and data acquisition (DAQ) device. Axle torque and rotational speed were measured using a torque-meter and a proximity sensor. Driving test was performed on an upland field at a speed of 7 km·h-1. Simulation model was developed using a multi-body dynamics software, and tire properties were measured and calculated to reflect the similar road conditions. Measured and simulated data were compared to validate the developed simulation model performance, and axle rotational speed was selected as simulation input data and axle torque and power were selected as simulation output data. As a result of driving performance, an average axle rotational speed was 115 rpm for each wheel. Average axle torque and power were 4.50, 4.21, 4.04, and 3.22 Nm and 53.42, 50.56, 47.34, and 38.07 W on front left, front right, rear left, and rear right wheel, respectively. As a result of simulation driving, average axle torque and power were 4.51, 3.9, 4.16, and 3.32 Nm and 55.79, 48.11, 51.62, and 41.2 W on front left, front right, rear left, and rear right wheel, respectively. Absolute error of axle torque was calculated as 0.22, 7.36, 2.97, and 3.11% on front left, front right, rear left, rear right wheel, respectively, and absolute error of axle power was calculated as 4.44, 4.85, 9.04, and 8.22% on front left, front right, rear left, and rear right wheel, respectively. As a result of absolute error, it was shown that developed simulation model can be used for driving performance prediction of electric driven vehicle. Only straight driving was considered in this study, and various road and driving conditions would be considered in future study.