Browse > Article
http://dx.doi.org/10.4014/jmb.2204.04012

Molecular Cloning and Characterization of a Novel Exo-β-1,3-Galactanase from Penicillium oxalicum sp. 68  

Zhou, Tong (Department of Endocrinology and Metabolism, Department of Respiratory Medicine, The First Hospital of Jilin University)
Hu, Yanbo (School of Food Sciences and Engineering, Chang Chun University)
Yan, Xuecui (Engineering Research Center of Glycoconjugates, Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University)
Cui, Jing (Central Laboratory, Changchun Normal University)
Wang, Yibing (Engineering Research Center of Glycoconjugates, Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University)
Luo, Feng (Engineering Research Center of Glycoconjugates, Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University)
Yuan, Ye (Engineering Research Center of Glycoconjugates, Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University)
Yu, Zhenxiang (Department of Endocrinology and Metabolism, Department of Respiratory Medicine, The First Hospital of Jilin University)
Zhou, Yifa (Engineering Research Center of Glycoconjugates, Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University)
Publication Information
Journal of Microbiology and Biotechnology / v.32, no.8, 2022 , pp. 1064-1071 More about this Journal
Abstract
Arabinogalactans have diverse biological properties and can be used as pharmaceutical agents. Most arabinogalactans are composed of β-(1→3)-galactan, so it is particularly important to identify β-1,3-galactanases that can selectively degrade them. In this study, a novel exo-β-1,3-galactanase, named PoGal3, was screened from Penicillium oxalicum sp. 68, and hetero-expressed in P. pastoris GS115 as a soluble protein. PoGal3 belongs to glycoside hydrolase family 43 (GH43) and has a 1,356-bp gene length that encodes 451 amino acids residues. To study the enzymatic properties and substrate selectivity of PoGal3, β-1,3-galactan (AG-P-I) from larch wood arabinogalactan (LWAG) was prepared and characterized by HPLC and NMR. Using AG-P-I as substrate, purified PoGal3 exhibited an optimal pH of 5.0 and temperature of 40℃. We also discovered that Zn2+ had the strongest promoting effect on enzyme activity, increasing it by 28.6%. Substrate specificity suggests that PoGal3 functions as an exo-β-1,3-galactanase, with its greatest catalytic activity observed on AG-P-I. Hydrolytic products of AG-P-I are mainly composed of galactose and β-1,6-galactobiose. In addition, PoGal3 can catalyze hydrolysis of LWAG to produce galacto-oligomers. PoGal3 is the first enzyme identified as an exo-β-1,3-galactanase that can be used in building glycan blocks of crucial glycoconjugates to assess their biological functions.
Keywords
Exo-${\beta}$-1,3-galactanase; glycoside hydrolase family 43; Penicillium oxalicum; larch wood arabinogalactans;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Yao Y, Jian Y, Du Z, Wang P, Kan D. 2018. Structural elucidation and immune-enhancing activity of an arabinogalactan from flowers of Carthamus tinctorius L. Carbohydr. Polym. 202: 134-142.   DOI
2 Ali N, Xue Y,Gan L, Liub J, Longb M. 2016. Purification, characterization, gene cloning and sequencing of a new β-glucosidase from aspergillus niger be-2. Appl. Biochem. Microbiol. 52: 564-571.   DOI
3 Sakamoto T, Ogura A, Inui M, Tokuda S, Hosokawa S, Ihara H, et al. 2011. Identification of a GH62 alpha-L-arabinofuranosidase specific for arabinoxylan produced by Penicillium chrysogenum. Appl. Microbiol. Biotechnol. 90: 137-146.   DOI
4 Kotake T, Kaneko S, Kubomoto A, Haque MA, Kobayashi H, Tsumuraya Y. 2004. Molecular cloning and expression in Escherichia coli of a Trichoderma viride endo-beta-(1-->6)-galactanase gene. Biochem. J. 377: 749-755.   DOI
5 Jordan DB, Wagschal K, Grigorescu AA, Braker JD. 2013. Highly active β-xylosidases of glycoside hydrolase family 43 operating on natural and artificial substrates. Appl. Microbiol. Biotechnol. 97: 4415-28.   DOI
6 Kato H, Takeuchi Y, Tsumuraya Y, Hashimoto Y, Nakano H, Kova P. 2003. In vitro biosynthesis of galactans by membrane-bound galactosyltransferase from radish (Raphanus sativus L.) seedlings. Planta 217: 271-82.   DOI
7 Yang H, Ichinose H, Yoshida M, Nakajima M, Kobayashi H, Kaneko S. 2006. Characterization of a thermostable Endo-β-1,4- galactanase from the Hyperthermophile Thermotoga maritima. Biosci. Biotechnol. Biochem. 70: 538-541.   DOI
8 Wang D, Li K, Wang GZ, Li ZY, Qin XM, Du GH, et al. 2018. Establishment of fingerprint of Astragali Radix polysaccharides based on endo-1,4-β-malactanase hydrolysis and identification of Astragali Radix of different germplasm resources. Zhongguo Zhong Yao Za Zhi. 43: 2964-2972.
9 Ichinose H, Kotake T, Tsumuraya Y, Kaneko S. 2006. Characterization of an exo-β-1,3-D-galactanase from Streptomyces avermitilis NBRC14893 acting on arabinogalactan-proteins. Biosci. Biotechnol. Biochem. 70: 2745-50.   DOI
10 Lemaire A, Garzon CD, Perrin A, Habrylo O, Trezel P, Bassard S, et al. 2020. Three novel rhamnogalacturonan I- pectins degrading enzymes from Aspergillus aculeatinus: Biochemical characterization and application potential. Carbohydr. Polym. 248: 116752.   DOI
11 Ichinose H, Kotake T, Tsumuraya Y, et al. 2006. Characterization of an exo-β-1,3-D-galactanase from Streptomyces avermitilis NBRC14893 acting on arabinogalactan-proteins. J. Agric. Chem. Soc. Japan 70: 6.
12 Kotake T, Hirata N, Degi Y, Ishiguro M, Kitazawa K, Takata R, et al. 2011. Endo-β-1,3-galactanase from winter mushroom flammulina velutipes. J. Biol. Chem. 286: 27848-27854.   DOI
13 Hu Y, Yan X, Zhang H, Liu J, Luo F, Cui Y, et al. 2018. Cloning and expression of a novel α-1,3-arabinofuranosidase from Penicillium oxalicum sp. 68. AMB Express 8: 51.   DOI
14 Somogyi M. 1952. Notes on sugar determination. J. Biol. Chem. 195: 19-23.   DOI
15 Wu D, Cui L, Yang G, Ning X, Sun L, Zhou Y. 2018. Preparing rhamnogalacturonan II domains from seven plant pectins using Penicillium oxalicum degradation and their structural comparison. Carbohydr. Polym. 108: 209-215.
16 Goellner EM, Utermoehlen J, Kramer R, Classen B. 2011. Structure of arabinogalactan from Larix laricina and its reactivity with antibodies directed against type-II-arabinogalactans. Carbohydr. Polym. 86: 1739-1744.   DOI
17 Currier NL, Lejtenyi D, Miller SC. 2003. Effect over time of in-vivo administration of the polysaccharide arabinogalactan on immune and hemopoietic cell lineages in murine spleen and bone marrow. Phytomedicine 10: 145-153.   DOI
18 Beuth J, Ko HL, Schirrmacher V, Uhlenbruck G, Pulverer G. 1988. Inhibition of liver tumor cell colonization in two animal tumor models by lectin blocking with D Galactose or arabinogalactan. Clin. Exp. Metastasis 6: 115-120.   DOI
19 Riede L, Grube B, Gruenwald J. 2013. Larch arabinogalactan effects on reducing incidence of upper respiratory infections. Curr. Med. Res. Opin. 29: 251-258.   DOI
20 Scigelova M, Singh S, Crout DHG. 1999. Glycosidases-a great synthetic tool. J. Mol. Catal. B Enzym. 6: 483-494.   DOI
21 Dragosits M, Pflugl S, Kurz S, Razzazi-Fazeli E, Wilson I, Rendic D. 2014. Recombinant aspergillus β-galactosidases as a robust glycomic and biotechnological tool. Appl. Microbiol. Biotechnol. 98: 3553-3567.   DOI
22 Liu Y, Huang L, Zheng D, Xu Z, Li Y, Shao S, et al. 2019. Biochemical characterization of a novel GH43 family β-xylosidase from Bacillus pumilus. Food Chem. 295: 653-661.   DOI
23 Vandermarliere E, Bourgois TM, Winn MD, Van Campenhout S, Volckaert G, Delcour JA, et al. 2009. Structural analysis of a glycoside hydrolase family 43 arabinoxylan arabinofuranohydrolase in complex with xylotetraose reveals a different binding mechanism compared with other members of the same family. Biochem. J. 418: 39-47.   DOI
24 Okawa M, Fukamachi K, Tanaka H, Sakamoto T. 2013. Identification of an exo-β-1,3-D-galactanase from Fusarium oxysporum and the synergistic effect with related enzymes on degradation of type II arabinogalactan. Appl. Microbiol. Biotechnol. 97: 9685-9694.   DOI
25 Muller M, Calvert M, Hottmann I, Kluj RM, Mayer C. 2021. The exo-β-N-acetylmuramidase NamZ from Bacillus subtilis is the founding member of a family of exo-lytic peptidoglycan hexosaminidases. J. Biol. Chem. 296: 100519.   DOI
26 Prescott JH, Groman EV, Gulyas G. 1997. New molecular weight forms of arabinogalactan from Larix occidentalis. Carbohydr. Res. 301: 89-93.   DOI
27 Tang S, Jiang M, Huang C, Lai C, Fan Y, Yong Q. 2018. Characterization of arabinogalactans from Larix principis-rupprechtii and their effects on NO production by macrophages. Carbohydr. Polym. 200: 408-415.   DOI
28 Enriquez PM, Chu J, Josephson L, Tennant BC. 1995. Conjugation of Adenine arabinoside 5'-Monophosphate to arabinogalactan: Synthesis, characterization, and antiviral activity. Bioconjug. Chem. 6: 195-202.   DOI
29 Kotake T, Kitazawa K, Takata R, Okabe K, Ichinose H, Kaneko S, et al. 2009. Molecular cloning and expression in Pichia pastoris of a Irpex lacteus exo-β-(1→3)-galactanase Gene. Biosci. Biotechnol. Biochem. 73: 2303-2309.   DOI
30 Fujita K, Sakaguchi T, Sakamoto A, Shimokawa M, Kitahara K. 2014. Bifidobacterium longum subsp. longum Exo-β-1,3- Galactanase, an Enzyme for the Degradation of Type II Arabinogalactan. Appl. Environ. Microbiol. 80: 4577-4584.   DOI
31 Ichinose H, Yoshida M, Kotake T, Kuno A, Igarashi K, Tsumuraya Y, et al. 2005 An exo-beta-1,3-galactanase having a novel beta-1,3- galactan-binding module from Phanerochaete chrysosporium. J. Biol. Chem. 280: 25820-25829.   DOI
32 Ling NX, Lee J, Ellis M, Liao ML, Mau SL, Guest D, et al. 2012. An exo-β-(1→3)-D-galactanase from Streptomyces sp. provides insights into type II arabinogalactan structure. Carbohydr. Res. 352: 70-81.   DOI
33 Ishida T, Fujimoto Z, Ichinose H, Igarashi K, Kaneko S, Samejima M. 2009. Crystallization of selenomethionyl exo-beta-1,3- galactanase from the basidiomycete Phanerochaete chrysosporium. Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun. 65: 1274-1276.   DOI
34 Ichinose H, Kuno A, Kotake T, Yoshida M, Sakka K, Hirabayashi J, et al. 2006. Characterization of an exo-beta-1,3-galactanase from Clostridium thermocellum. Appl. Environ. Microbiol. 72: 3515-3523.   DOI
35 Jiang D, Fan J, Wang X, Zhao Y, Huang B, Liu J, et al. 2012. Crystal structure of 1,3Gal43A, an exo-β-1,3-galactanase from Clostridium thermocellum. J. Struct. Biol. 80: 447-457.
36 Tsumuraya Y, Mochizuki N, Hashimoto Y, Kovac P. 1990. Purification of an exo-β-(1→3)-D-galactanase of Irpex lacteus (Polyporus tulipiferae) and its action on arabinogalactan-proteins. J. Biol. Chem. 265: 7207-7215.   DOI
37 Bueren AL, Mulder M, Leeuwen SV, Dijkhuizen L. 2017. Prebiotic galactooligosaccharides activate mucin and pectic galactan utilization pathways in the human gut symbiont Bacteroides thetaiotaomicron. Sci. Rep. 7: 40478.   DOI
38 Torpenholt S, Poulsen J, Muderspach SJ, Maria LD, Leggio LL. 2019. Structure of Aspergillus aculeatus β-1,4-galactanase in complex with galactobiose. Acta Crystallogr. F Struct. Biol. Commun. 75: 399-404.   DOI
39 Okemoto K, Uekita T, Tsumuraya Y, Hashimoto Y, Kasama T. 2003. Purification and characterization of an endo-β-(1→6)- galactanase from Trichoderma viride. Carbohydr. Re. 338: 219-230.   DOI
40 Li J, Liu G, Chen M, Li Z, Qin Y, Qu Y. 2013. Cellodextrin transporters play important roles in cellulose induction in the cellulolytic fungus Penicillium oxalicum. Appl. Microbiol. Biotechnol. 97: 10479-10488.   DOI
41 Tsumuraya Y, Hashimoto Y, Yamamoto S, Shibuya N. 1984. Structure of l-arabino-d-galactan-containing glycoproteins from radish leaves. Carbohydr. Res. 134: 215-228.   DOI
42 Laemmli UK. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680-685.   DOI
43 Zhang X, Li Y, Bi H, Li X, Ni W, Han H, et al. 2009. Total fractionation and characterization of the water-soluble polysaccharides isolated from Panax ginseng C. A. Meyer. Carbohydr. Polym. 77: 544-552.   DOI
44 Shakhmatov EG, Belyy VA, Makarova EN. 2018. Structure of acid-extractable polysaccharides of tree greenery of Picea abies. Carbohydr. Polym. 199: 320-330.   DOI