• 제목/요약/키워드: 316L Stainless Steel Powder

검색결과 58건 처리시간 0.026초

에너지 제어 용착을 이용한 스테인리스 316L의 적층 특성 및 기계적 물성 평가 (Deposition Characteristics and Mechanical Properties of Stainless Steel 316L Fabricated via Directed Energy Deposition)

  • 양승원;이협;심도식
    • 한국기계가공학회지
    • /
    • 제20권6호
    • /
    • pp.59-69
    • /
    • 2021
  • Directed energy deposition (DED) is an additive manufacturing technology involving a focused high-power laser or electron beam propagating over the substrate, resulting in melt pool formation while simultaneously supplying metal powder to the melt pool area to deposit the material. DED is performed to repair and strengthen parts in various applications, as it can be easily integrate local area cladding and cross-material deposition. In this study, we characterize stainless steel 316 L parts fabricated via DED based on various deposition conditions and geometries to widen the application of DED. The deposition characteristics are investigated by varying the laser power and powder feed rate. Multilayer deposition with a laser power of 362 W and a powder feed rate of 6.61 g/min indicate a height closest to the design value while affording high surface quality. The microhardness of the specimen increases from the top to the bottom of the deposited area. Tensile tests of specimens with two different deposition directions indicate that horizontally long specimens with respect to a substrate demonstrate a higher ultimate tensile strength and yield strength than vertically long specimens with lower elongation.

선택적 레이저 용융 공정을 이용한 316L 스테인리스 강의 제조 시 공정 중단 및 재 시작이 미세조직과 국부 물성에 미치는 영향 (Effect of Process Stopping and Restarting on the Microstructure and Local Property of 316L Stainless Steel Manufactured by Selective Laser Melting Process)

  • 주현진;우정민;손용호;이기안
    • 한국분말재료학회지
    • /
    • 제29권1호
    • /
    • pp.1-7
    • /
    • 2022
  • This study investigates the effect of process stopping and restarting on the microstructure and local nanoindentation properties of 316L stainless steel manufactured via selective laser melting (SLM). We find that stopping the SLM process midway, exposing the substrate to air having an oxygen concentration of 22% or more for 12 h, and subsequently restarting the process, makes little difference to the density of the restarted area (~ 99.8%) as compared to the previously melted area of the substrate below. While the microstructure and pore distribution near the stop/restart area changes, this modified process does not induce the development of unusual features, such as an inhomogeneous microstructure or irregular pore distribution in the substrate. An analysis of the stiffness and hardness values of the nano-indented steel also reveals very little change at the joint of the stop/restart area. Further, we discuss the possible and effective follow-up actions of stopping and subsequently restarting the SLM process.

Sintering Stainless Steels with Boron Addition in Nitrogen Base Atmosphere

  • Abenojar, J.;Esteban, D.;Martinez, M.A.;Velasco, F.
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part 1
    • /
    • pp.574-575
    • /
    • 2006
  • Due to the increasing use that the stainless steel is getting recently in the nuclear industry, this document proposes the study of the stainless steel 316L with boron addition. With the final product, the properties of the stainless steel 316L (good mechanical properties and high corrosion resistance) with the boron neutron absorption properties are claimed to unify. The P/M technologies allow adding higher boron quantities than with the solidification conventional technologies, where segregation is produced.

  • PDF

Wear Resistance Properties of Tungsten Carbide/Stainless Steel Composite Materials Prepared by Pulsed Current Sintering

  • Kawakami, Yuji;Tamai, Fujio;Enjoji, Takashi;Takashima, Kazuki;Otsu, Masaaki
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part 1
    • /
    • pp.89-90
    • /
    • 2006
  • Austenitic stainless steel has been used as a corrosion resistance material. However, austenitic stainless steel has poor wear resistance property due to its low hardness. In this investigation, we apply powder composite process to obtain hard layer of Stainless steel. The composite material was fabricated from planetary ball milled SUS316L stainless steel powder and WC powder and then sintered by Pulsed Current Sintering (PCS) method. We also added TiC powder as a hard particle in WC layer. Evaluations of wear properties were performed by pin-on-disk wear testing machine, and a remarkable improvement in wear resistance property was obtained.

  • PDF

적층식 제조 공정을 활용한 스테인레스 316L 제작기술의 특징과 기계적 속성 (Characterization and Mechanical Properties of Stainless Steel 316L Fabricated Using Additive Manufacturing Processes)

  • Choi, Cheol;Jung, Mihee
    • KEPCO Journal on Electric Power and Energy
    • /
    • 제7권1호
    • /
    • pp.129-135
    • /
    • 2021
  • Recently, additive manufacturing (AM) technology such as powder bed fusion (PBF) and directed energy deposition (DED) are actively attempted as consumers' needs for parts with complex shapes and expensive materials. In the present work, the effect of processing parameters on the mechanical properties of 316L stainless steel coupons fabricated by PBF and DED AM technology was investigated. Three major mechanical tests, including tension, impact, and fatigue, were performed on coupons extracted from the standard components at angles of 0, 45, 90 degrees for the build layers, and compared with those of investment casting and commercial wrought products. Austenitic 316L stainless steel additively manufactured have been well known to be generally stronger but highly vulnerable to impact and lack in elongation compared to casting and wrought materials. The process-induced pore density has been proved the most critical factor in determining the mechanical properties of AM-built metal parts. Therefore, it was strongly recommended to reduce those lack of fusion defects as much as possible by carefully control the energy density of the laser. For example, under the high energy density conditions, PBF-built parts showed 46% higher tensile strength but more than 75% lower impact strength than the wrought products. However, by optimizing the energy density of the laser of the metal AM system, it has been confirmed that it is possible to manufacture metal parts that can satisfy both strength and ductility, and thus it is expected to be actively applied in the field of electric power section soon.

레이저 직접 용착공정으로 형성된 스테인레스/인코넬 합금 계면의 미세조직 분석 (Investigation on Interfacial Microstructures of Stainless Steel/Inconel Bonded by Directed Energy Deposition of alloy Powders)

  • 엄영성;김경태;정수호;유지훈;양동열;최중호;심철용;안승준
    • 한국분말재료학회지
    • /
    • 제27권3호
    • /
    • pp.219-225
    • /
    • 2020
  • The directed energy deposition (DED) process of metal 3D printing technologies has been treated as an effective method for welding, repairing, and even 3-dimensional building of machinery parts. In this study, stainless steel 316L (STS316L) and Inconel 625 (IN625) alloy powders are additively manufactured using the DED process, and the microstructure of the fabricated STS316L/IN625 sample is investigated. In particular, there are no secondary phases in the interface between STS316L and the IN625 alloy. The EDS and Vickers hardness results clearly show compositionally and mechanically transient layers a few tens of micrometers in thickness. Interestingly, several cracks are only observed in the STS 316L rather than in the IN625 alloy near the interface. In addition, small-sized voids 200-400 nm in diameter that look like trapped pores are present in both materials. The cracks present near the interface are formed by tensile stress in STS316L caused by the difference in the CTE (coefficient of thermal expansion) between the two materials during the DED process. These results can provide fundamental information for the fabrication of machinery parts that require joining of two materials, such as valves.

Formulation and Identification of an Anisotropic Constitutive Model for Describing the Sintering of Stainless Steel Powder Compacts

  • Vagnon, Alexandre;Bouvardb, Didier.;Kapelskic, Georges
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part 1
    • /
    • pp.64-65
    • /
    • 2006
  • Anisotropic constitutive equations for sintering of metal powder compacts have been formulated from a linear viscous transversely-isotropic model in which an anisotropic sintering stress has been introduced to describe free sintering densification kinetics. The identification of material parameters defined in the model, has been achieved from thermomechanical experiments performed on 316L stainless steel warm-compacted powder in a dilatometer allowing controlled compressive loading.

  • PDF

Hybrid Microstructure and Mechanical Properties of HRS Processed SUS316L and Titanium Materials

  • Fujiwara, Hiroshi;Ohta, Koichi;Noro, Atsushi;Ameyama, Kei
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part 1
    • /
    • pp.540-541
    • /
    • 2006
  • SUS316L stainless steel, commercial pure Titanium and Ti-6Al-4V alloy powders applied by Mechanical Milling (MM) process are sintered by Hot Roll Sintering (HRS) process. Microstructure and mechanical properties of those HRS materials is investigated. The microstructures of materials produced by HRS process consist of fine grains and work-hardened structure, that is, the hybrid microstructure. Tensile test of the HRS material demonstrated the good mechanical properties. These results show that the HRS process is very effective to the improvement of mechanical properties in the SUS316L stainless steel, commercial pure Titanium and Ti-6Al-4V alloy.

  • PDF

스테인리스강 316L 재질의 PBF 및 DED 방식 금속 3D프린팅 시편 인장 시험 결과 (Tensile Test Results for Metal 3D Printed Specimens of Stainless Steel 316L Manufactured by PBF and DED)

  • 장경남;양승한
    • 한국압력기기공학회 논문집
    • /
    • 제19권1호
    • /
    • pp.11-19
    • /
    • 2023
  • Additive manufacturing technology, called as 3D printing, is one of fourth industrial revolution technologies that can drive innovation in the manufacturing process, and thus should be applied to nuclear industry for various purposes according to the manufacturing trend change in the future. In this paper, we performed tensile tests of 3D printed stainless steel 316L as-built specimens manufactured by two types of technology; DED (Directed Energy Deposition) and PBF (Powder Bed Fusion). Their mechanical properties (tensile strength, yield strength, elongation and reduction of area) were compared. As a result of comparison, the mechanical properties of the PBF specimens were slightly better than those of DED specimens. In the same additive type of specimens, the tensile and yield strength of specimens in the X and Y direction were higher than those in the Z direction, but the elongation and ROA were lower.

Powder Bed Fusion 공정으로 제조한 STS 316L의 미세조직과 후속 열처리 특성 (Microstructural Analysis of STS316L Samples Manufactured by Powder Bed Fusion and Post-heat Treatments)

  • 송승윤;이동완;딘 반 꽁;김진우;이성모;주승환;김진천
    • 한국분말재료학회지
    • /
    • 제29권1호
    • /
    • pp.14-21
    • /
    • 2022
  • In the powder bed fusion (PBF) process, a 3D shape is formed by the continuous stacking of very fine powder layers using computer-aided design (CAD) modeling data, following which laser irradiation can be used to fuse the layers forming the desired product. In this method, the main process parameters for manufacturing the desired 3D products are laser power, laser speed, powder form, powder size, laminated thickness, and laser diameter. Stainless steel (STS) 316L exhibits excellent strength at high temperatures, and is also corrosion resistant. Due to this, it is widely used in various additive manufacturing processes, and in the production of corrosion-resistant components with complicated shapes. In this study, rectangular specimens have been manufactured using STS 316L powder via the PBF process. Further, the effect of heat treatment at 800 ℃ on the microstructure and hardness has been investigated.