• Title/Summary/Keyword: 300m Span

Search Result 33, Processing Time 0.028 seconds

A Study on the Stability for Single-Layer Latticed Spherical Dome with Span 300m according to Junction's Condition of Member (스팬 300m 대공간 단층래티스 돔의 부재 접합조건에 따른 안정성 검토에 관한 연구)

  • Jung, Hwan-Mok
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2018.05a
    • /
    • pp.14-15
    • /
    • 2018
  • This study is to estimate the buckling characteristics of single-layer latticed dome with Span 300m according to junction's conditions of member.

  • PDF

Resistance Factor Calculation of Driven Piles of Long Span Bridges (장대교량 타입말뚝에 대한 저항계수 산정)

  • Kim, Dong-Wook;Park, Jae-Hyun;Lee, Joon-Yong;Kwak, Ki-Seok
    • Journal of the Korean Geotechnical Society
    • /
    • v.29 no.4
    • /
    • pp.57-65
    • /
    • 2013
  • Assessment of uncertainties of loads and resistances is prerequisite for the development of load and resistance factor design (LRFD). Many previous studies related to resistance factor calculations of piles were conducted for short or medium span bridges (span lengths less than 200m) reflecting the live load uncertainty for ordinary span bridges. In this study, by using a revised live load model and its uncertainty for long span bridges (span lengths longer than 200m and shorter than 1500m), resistance factors are recalibrated. For the estimation of nominal pile capacity (both base and shaft capacities), the Imperial College Pile (ICP) design method is used. For clayey and sandy foundation, uncertainty of resistance is assessed based on the ICP database. As long span bridges are typically considered as more important structures than short or medium span bridges, higher target reliability indices are assigned in the reliability analysis. Finally, resistance factors are calculated and proposed for the use of LRFD of driven piles for ordinary span and long span bridges.

Earthquake Response Analysis for Seismic Isolation System of Single Layer Lattice Domes With 300m Span (300m 단층 래티스 돔의 면진 장치에 대한 지진 반응 해석)

  • Park, Kang-Geun;Chung, Mi-Ja;Lee, Dong-Woo
    • Journal of Korean Association for Spatial Structures
    • /
    • v.18 no.3
    • /
    • pp.105-116
    • /
    • 2018
  • The objective of this study is to investigate the response reducing effect of a seismic isolation system installed between 300m dome and supports under both horizontal and vertical seismic ground motion. The time history analysis is performed to investigate the dynamic behavior of single layer lattice domes with and without a lead rubber bearing seismic isolation system. In order to ensure the seismic performance of lattice domes against strong earthquakes, it is important to investigate the mechanical characteristics of dynamic response. Horizontal and vertical seismic ground motions cause a large asymmetric vertical response of large span domes. One of the most effective methods to reduce the dynamic response is to install a seismic isolation system for observing seismic ground motion at the base of the dome. This paper discusses the dynamic response characteristics of 300m single layer lattice domes supported on a lead rubber seismic isolation device under horizontal and vertical seismic ground motions.

Structural Evaluation of the 300 Ton Goliath Crane (골리앗 크레인의 구조안정성 검증)

  • Shin, Sung-Hwan;Kim, Jeong-Kyeong;Song, Chul-Ki;Kim, Bum-Keun;Bae, Tae-Han;Kim, Joong-Moon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.11
    • /
    • pp.1515-1520
    • /
    • 2011
  • Structural analysis and evaluation for the 300ton Goliath Crane were conducted with an FEM tool. The Golliath Crane has a 300 ton hoisting weight, a 110 m span and a 50 m lift. All loads such as the self weight, crane traveling load, trolley traveling load, wind load, and earthquake force, etc., that are indicat in the reference standards, were inputted as various severe conditions affecting the crane. The deformation and equivalent stress (von Mises stress) were evaluated for the crane structures.

A Proposal of Bridge Design Guideline by Analysis of Marine Accident Parameters occurred at Bridges Crossing Navigable Waterways (항만횡단 해상교량의 해양사고 관련 인자 분석을 통한 교량설계안 제안)

  • Park, Young-Soo;Lee, Yun-Sok;Park, Jin-Soo;Cho, Ik-Soon;Lee, Un
    • Journal of Navigation and Port Research
    • /
    • v.32 no.10
    • /
    • pp.743-750
    • /
    • 2008
  • Recently Bridges crossing waterway are constructed in navigable waterway, so marine accidents near bridges navigable waterway often occurred bemuse that has affect dangerous element for. This paper analysed the necessary environmental factors to navigate safely near bridges and how to set up the environmental factors. Marine accidents elements occurred near bridges relate to span of bridge, size of navigating ship, length of straight way and traffic volume except mistake of mariners. As results of marine accident parameter analysis, Span of bridge is necessary more than 300m at least based on marine accident's analysis, and in case of more than ship's Length 150m, span of bridge is necessary more than 500m, $3{\sim}4L$(L; Ship's Length). Length of straight way before bridge is necessary more than 8L to minimize the marine accident.

A Study on the Stability of the Single-Layer Latticed Dome during Erection Using the Step-Up Method (Step-Up 공법에 의한 단층래티스돔의 시공시 안정성 연구)

  • Koo, Choong-Mo;Jung, Hwan-Mok;Kim, Cheol-Hwan
    • Journal of Korean Association for Spatial Structures
    • /
    • v.12 no.4
    • /
    • pp.109-118
    • /
    • 2012
  • The large-space single-layer lattice dome is relatively simpler in terms of the arrangement of the various framework members and of the design of the junction than the multi-layered lattice dome, can reduce the numbers and quantity of the framework members, and has the merit of exposing the beauty of the framework as it stands. The single-layer lattice dome, however, requires a stability investigation of the whole structure itself, along with an analysis of the stress of the framework members, because an unstable phenomenon called "buckling" occurs when its weight reaches critical levels. Many researchers have systematically conducted researches on the stability evaluation of the single-layer lattice dome. No construction case of a single-layer lattice dome with a 300-m-long span, however, has yet been reported anywhere in the world. The large-space dome structure is difficult to erect due to the gigantic span and higher ceiling compared with other common buildings, and its construction cost is generally huge. The method of erecting a structure causes major differences in the construction cost and period. Therefore, many researchers have been conducting various researches on the method of erecting such structure. The step-up method developed by these authors can reduce the construction cost and period to a great extent compared with the other general methods, but the application of this method inevitably requires the development of system supports in the center section as well as pre-existing supports in the boundary sections. In this research, the safety during the construction of a single-layer lattice dome with 300-m-long span using pre-existing materials was examined in the aspect of structural strength, and the basic data required for manufacturing the supports in the application of the step-up method developed by these authors during the erection of the roof structure were obtained.

Effects of Multi-stepwise TPSM on Improving the Behavior of H-beam bridge (H형강 교량의 성능개선을 위한 다단계 온도프리스트레싱 효과 분석)

  • Ahn, Jin Hee;Kim, Jun Hwan;Jung, Chi Young;Kim, Sang Hyo
    • Journal of Korean Society of Steel Construction
    • /
    • v.19 no.5
    • /
    • pp.527-537
    • /
    • 2007
  • The main girders and cross-beams of an H-beam bridge consisted of factory-made H-beams, providing better conditions for quality control. Also, on-site fabrication works can be minimized and most of the stiffeners can be omitted, enabling simple and economic construction. In this study, the effect of the Multi-Stepwise TPSM (M-TPSM) on improving the maximum span length and section efficiency is analyzed. Compared to a 30-m-long, five-girder conventional plate girder bridge, structural analysis results showed that 50.7~55.1% of the girder height and 24.1~26.2% of the self-weight may be reduced by the application of M-TPSM to a five-girder H-beam bridge constructed with H-$900{\times}300$beams. In case of conventional H-beam bridges without M-TPSM, it was found that seven girders are required for a similar level of load-carrying capacity. Therefore, it is concluded that by the application of the M-TPSM, the H-beam bridge would become one of most cost-competitive options for short- and medium-span bridges.

The Examination of Application in Curved Bridge used IPC Girder (곡선교에서의 IPC 거더교 적용성 검토)

  • 한만엽;곽창현
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.847-852
    • /
    • 2001
  • This study is to applicate IPC girder at curved bridge. This study introduces the variable(radius, $d_{ci}$, $d_{co}$, etc..) used in design IPC curved bridge. And this presents the possible radius in simple bridge and continuous bridge. For example, simple bridge that have span length is 30m, minimum possible radius is 300m. In continuous bridge, girders are arranged by sloped in $\theta$. So in this case, the bridge is under consideration that horizontality pressure in bridge pier.

  • PDF

Experimental and Computational Investigation of Wind Flow Field on a Span Roof Structure

  • K B Rajasekarababu;G Vinayagamurthy;Ajay Kumar T M;Selvirajan S
    • International Journal of High-Rise Buildings
    • /
    • v.11 no.4
    • /
    • pp.287-300
    • /
    • 2022
  • Unconventional structures are getting more popular in recent days. Large-span roofs are used for many structures, such as airports, stadiums, and conventional halls. Identifying the pressure distribution and wind load acting on those structures is essential. This paper offers a collaborative study of computational fluid dynamics (CFD) simulations and wind tunnel tests for assessing wind pressure distribution for a building with a combined slender curved roof. The hybrid turbulence model, Improved Delayed Detached Eddy Simulation (IDDES), simulates the open terrain turbulent flow field. The wind-induced local pressure coefficients on complex roof structures and the turbulent flow field around the structure were thus calculated based upon open terrain wind flow simulated with the FLUENT software. Local pressure measurements were investigated in a boundary layer wind tunnel simultaneous to the simulation to determine the pressure coefficient distributions. The results predicted by CFD were found to be consistent with the wind tunnel test results. The comparative study validated that the recommended IDDES model and the vortex method associated with CFD simulation are suitable tools for structural engineers to evaluate wind effects on long-span complex roofs and plan irregular buildings during the design stage.

Properties of Polyalphaolefin-Based Ferrofluids

  • Kim, Jong-Hee;Park, Keun-Bae
    • Journal of Magnetics
    • /
    • v.20 no.4
    • /
    • pp.371-376
    • /
    • 2015
  • Magnetite nanoparticles were synthesized by adding excess ammonium hydroxide to a solution of iron (II) and (III) chlorides. The surfactants of oleic acid and Span 80 were applied in sequence to the magnetic particles as a combined stabilizer, and poly-${\alpha}$-olefin (PAO) 30 or 60 was used as the liquid base with a low or high viscosity, respectively. The ferrofluids were prepared with the concentrations of 200, 300, 400, and 500 mg/mL, and characterized by density, dispersion, magnetization, and viscosity. The density of the fluids increased proportionally to the concentration from 0.98 to 1.27 g/mL and 1.01 to 1.30 g/mL with PAO 30 base and PAO 60 base, and the dispersion stability was 77-95 and 81-74% for the PAO-30 and PAO-60-based fluids, respectively. The observed saturation magnetization values of the PAO-30 and PAO-60-based ferrofluids were 16 to 42 mT and 17 to 41 mT with the concentration increase in the range 200-500 mg/mL, respectively, depending upon the content of magnetic particles in the fluid. The viscosity variation of the PAO-30 and PAO-60-based ferrofluids in the temperature range $20-80^{\circ}C$ was the least with the concentrations of 400 and 300 mg/mL, respectively.