• Title/Summary/Keyword: 3.5 GHz band

Search Result 840, Processing Time 0.028 seconds

Circular Ring Open-Ended Monopole Antenna with Strip for WLAN Dual-Band Operations

  • Yoon, Joong-Han
    • Journal of information and communication convergence engineering
    • /
    • v.12 no.1
    • /
    • pp.1-7
    • /
    • 2014
  • A novel design of a simple circular ring with open-ended monopole antenna for wireless local area network (WLAN) applications is proposed in this article. The proposed antenna consists of an open-ended circular ring and $50-{\Omega}$ microstrip feed-line. The proposed antenna is capable of generating two separate resonant modes with good impedance-matching conditions. A prototype of the proposed antenna is designed, fabricated, and measured. Acceptable agreement between the measurement and simulation results is achieved. Experimental results show that the proposed antenna has operating bandwidths of 1.99-3.04 GHz and 5.08-6.1 GHz with a return loss of less than -10 dB, covering the required bandwidths of the 2.4/5.2/5.8-GHz WLAN standards. This is a microstrip antenna for IEEE 802.11a/b wireless local area networks applications. Meanwhile, the two-dimensional (2D) radiation patterns and three-dimensional (3D) gain performance of the antenna are also observed and discussed.

A Design of Dual-band Microstrip Antenna Loading Inverted-L-shaped Parasitic Elements Vertically at Radiation Apertures for GPS Applications (방사개구면에 역 L형 기생소자를 세운 GPS용 이중대역 마이크로스트립 안테나 설계)

  • Choi, Yoon-Seon;Woo, Jong-Myung
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.14 no.5
    • /
    • pp.38-43
    • /
    • 2015
  • In this paper, we present novel dual-band microstrip antennas using inverted-L-shaped parasitic elements vertically at radiation apertures for GPS L1(1.575 GHz) and L2(1.227 GHz) bands. For making dual band which has large interval, the inverted-L-shaped parasitic element was loaded at the radiation aperture of a half-wavelength patch antenna(GPS L1) in opposite direction of the feeding point for receiving the low frequency(GPS L2). The low frequency occurs by perturbation and coupling between the patch and parasitic. Next, due to use circular polarizations at the GPS applications, two inverted-L-shaped parasitic elements were loaded at radiation apertures of each polarizations and the feeding point was moved at diagonal part of the patch. The dimensions of the designed circularly polarized antenna were $88.5{\times}79{\times}10.4mm^3$ ($0.36{\lambda}L{\times}0.32{\lambda}L{\times}0.04{\lambda}L$, ${\lambda}L$ is the free-space wavelength at 1.227 GHz). Measured -10 dB bandwidths were 116.3 MHz(7.4%) and 64.3 MHz(5.2%) at GPS L1 and L2 bands, respectively. All of these cover the respective required system bandwidths. The measured 3 dB axial ratio bandwidths were 11.7 MHz(0.74%) and 14 MHz(1.14%), respectively. Within each of the designed bands, broadside radiation patterns were observed.

Design and Implementation of Triple-band WLAN Antenna with Microstrip Lines (마이크로스트립 선로를 이용한 삼중대역 WLAN 안테나의 설계 및 제작)

  • Yoon, Joong-Han
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.14 no.1
    • /
    • pp.33-40
    • /
    • 2019
  • In this paper, a microstrip-fed triple-band antenna for WLAN system with microstrip lines was designed, fabricated and measured. The proposed antenna is composed of two strip lines and slit in the ground plane and then designed in order to get triple band characteristics. We carried out simulation on $L_3$, $L_{10}$, and slit parameters, and adjusted the parameters of the proposed antenna to satisfy the required frequency band and bandwidth. The proposed antenna is made of $32.0{\times}44.0{\times}1.0mm$ and is fabricated on the permittivity 4.4 FR-4 substrate. The experiment results shows that the proposed antenna obtained the -10 dB impedance bandwidth 120 MHz (890 MHz~1.01 MHz), 440 MHz (2.35~2.79 GHz), and 1,280 MHz (5.07~6.35 GHz) covering the triple WLAN bands. Also, the measured gain and radiation patterns characteristics of the proposed antenna are presented at required frequency band, respectively.

Design and Fabrication of WLAN / UWB Antenna for Marine High Speed Communication Network System (해양 초고속 통신망 시스템을 위한 WLAN(Wireless Local Area Network) / UWB(Ultra Wide Band)용 안테나 설계 및 제작)

  • Hong, Yong-Pyo;Kang, Sung-Woon;Kim, Kab-Ki
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.24 no.4
    • /
    • pp.489-495
    • /
    • 2018
  • In this paper, we designed and fabricated WLAN / UWB communication antennas operating at 3.3 [GHz] and 5 [GHz] bands in order to effectively use the high-speed communication network system that improved antenna miniaturization, gain and radiation pattern. Microstrip patch antennas were chosen to improve the bandwidth. The slot width, length, and transmission line width were calculated using the theoretical formula for each step. Simulation results show that the return loss is -14.053 [dB] at 3.3 [GHz] and -13.118 [dB] at 5 [GHz]. The gain showed a value of 2.479 [dBi] at 3.3 [GHz] and a value of 3.317 [dBi] at 5 [GHz]. After optimizing it with the CST Microwave Studio 2014 program, which can be 3D-designed, Based on these results, we investigated the performance of antennas by measuring their characteristics. In recent years, WLAN, which is a variety of wireless technologies that are continuously developing, and UWB, which is a communication technology which is increasing in frequency band due to an increase in demand of the technology users, is used for a high speed wireless communication system. Communication seems to be possible.

Low Noise RFIC VCO Based on InGaP/GaAs HBT for WLAN Applications (InGaP/GaAs HBT를 이용한 WLAM용 Low Noise RFIC VCO)

  • 명성식;전상훈;육종관
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.15 no.2
    • /
    • pp.145-151
    • /
    • 2004
  • This paper presents a fully integrated 5 GHz band low phase noise LC tank VCO. The implemented VCO is tuned by integrated PN diodes and tuning rage is 5.01∼5.30 GHz with 0∼3 V control voltage. For improved phase noise performance, a LC filtering technique is adapted. The measured phase noise is -87.8 dBc/Hz at 100 kHz offset frequency and -111.4 dBc/Hz at 1 MHz offset frequency which is excellent performance. Moreover phase noise is improved by 5 dB after employing the LC filter. It is the first experimental result in field of InGaP/GaAs HBT VCOs. The figure of merit of the fabricated VCO with LC filter is -172.1 dBc/Hz. It is the best result among 5 GHz InGaP HBT VCOs. Moreover this work shows lower DC power consumption, higher output power and more fixed output power compared with previous 4, 5 GHz band InGaP HBT VCOs.

Design and Implementation of LTE-TDD 2×2 MIMO Bidirectional RF Hybrid Beamforming System (LTE-TDD 2×2 MIMO 양방향 RF 하이브리드 빔포밍 시스템 설계 및 구현)

  • Lee, Kwang-Suk;Kim, Dong-Hyun;Oh, Hyuk-Jun
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.23 no.4
    • /
    • pp.23-31
    • /
    • 2018
  • This paper presented the implementation and design of the 2T-2R wireless HD video streaming systems over 1.7 GHz frequency band using 3GPP LTE-TDD standard on NI USRP RIO SDR platform. The baseband of the system used USRP RIO that are stored in Xilinx Kintex-7 chip to implement LTE-TDD transceiver modem, the signal that are transmitted from USRP RIO up or down converts to 1.7 GHz by using self-designed 1.7 GHz RF transceiver modules and it is finally communicated HD video data through self-designed 2x9 sub array antennas. It is that communication method between USRP RIO and Host PC use PCI express x4 to minimize delay of data to transmit and receive. The implemented system show high error vector magnitude performance above 32 dBc and to transmit and receive HD video in experiment environment anywhere. The proposed hybrid beam forming system could be used not only in the future 5G mobile communication systems under 6 GHz frequency band but also in the systems over 6 GHz frequency band like ones in mmWave frequency bands.

Characteristic of $LiNbO_3$ Domain Inversion and Fabrication of Electrooptic Device Application using Domain Reversal ($LiNbO_3$ 기판의 도메인 반전 특성과 이를 이용한 기능성 광변조기의 제작)

  • Jeong, W.J.;Kim, W.K.;Yang, W.S.;Lee, H.M.;Kwon, S.W.;Song, M.K.;Lee, H.Y.
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.44 no.3 s.357
    • /
    • pp.20-25
    • /
    • 2007
  • The periodic domain-inversion in the selective areas of $Ti:LiNbO_3$ Mach-Zender waveguides was performed and band-pass modulators and single sideband (SSB) modulators were fabricated by using domain-reversal. The domain wall velocity was precisely controlled by real-time analysis of a poling-induced response current under an applied voltage. The domain wall velocity was significantly affected by the crystal orientation of the domain wall propagation which influenced the final domain geometry. In a certain case, the decomposition of $LiNbO_3$ crystal was observed, for example, under the condition of too fast domain wall propagation. The fabricated band-pass modulator with a periodic domain-inversion structure showed the maximum modulation efficiency at 30.3 GHz with 5.1 GHz 3dB-bandwidth, and SSB modulator was measured to show 33 dB USB suppression over LSB at 5.8 GHz RF.

Miniaturization of Dual-Element Folded Dipole Antenna Using Zigzag Line for Multi-Band Service (다중 대역 서비스를 위한 지그재그 선로를 이용한 이중 소자 폴디드 다이폴 안테나의 소형화)

  • Jeon, Hoo-Dong;Ko, Ji-Hwan
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.29 no.4
    • /
    • pp.270-276
    • /
    • 2018
  • Fifth-generation communications are approaching, and they will require broadband antennas that include the existing LTE frequency band (1.7 GHz to 2.7 GHz) and the newly allocated frequency band (3.4 GHz to 3.7 GHz). Many kinds of antennas satisfy the required broadband characteristics, including the dual-element folded dipole antenna proposed in this paper. A zigzag line was used to make the antenna more compact. This was accomplished by reducing the physical length while maintaining the electrical length. To validate the proposed antenna, a prototype was fabricated using PCB (${\epsilon}_r$:4.4, Height: 1.6 mm) and its performance was evaluated. Results obtained by simulation and experiment showed good agreement.

Design and Fabrication of a Active Resonator Oscillator using Active Inductor and Active Capacitor with Negative Resistance (부성저항 특성을 갖는 능동 인덕터와 능동 캐패시터를 이용한 능동 공진 발진기 설계 및 제작)

  • 신용환;임영석
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.7 no.8
    • /
    • pp.1591-1597
    • /
    • 2003
  • In this paper, Active Resonator Oscillator using active inductor and active capacitor with HEMTs(agilent ATF­34143) is designed and fabricated. Active inductor with ­25$\Omega$ and 2.4nH in 5.5GHz frequency band and Active capacitor with ­14$\Omega$ and 0.35pF is designed. Active Resonator Oscillator for LO in ISM band(5.8GHz) is designed with active inductor and active capacitor. Active Resonator Oscillator has been simulated by Agilent ADS 2002C. Active Resonator oscillator implemented on the substrate which has the relative dielectric constant of 3.38, the height of 0.508mm, and metal thickness of 0.018mm. This Active Resonator Oscillator shows the oscillation frequency of 5.68GHz with the output power of ­3.6㏈m and phase noise of ­81㏈c/Hz at the offset frequency of 100KHz.

Broadband Patch Antenna for Wireless LAN Communication of 5GHz Band (5GHz 대역의 무선랜 통신을 위한 광대역 패치 안테나)

  • Yun, Tae-Soon
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.16 no.3
    • /
    • pp.395-400
    • /
    • 2021
  • In this paper, the wideband patch antenna is simulated and manufactured for the wireless LAN of 5GHz band that is defined in IEEE 802.11a. In the 802.11a, 200 channels of 675MHz are defined. Therefore, the bandwidth is needed more than 12.3%. For the wideband characteristics, low dielectric constant is realized with the multi-layer of 2 teflon substrates and the air dielectric layer and the feeding method of the coupled-line is used. Optimized wideband patch antenna is simulated with the return loss of 38.99dB at the center frequency of 5.43GHz and the bandwidth of 12.9%. The gain of manufactured patch antenna is 4.38, 4.52, and 5.12dBi at the channel number of 46, 56, and 153, respectively.