• Title/Summary/Keyword: 3-point MPPT

Search Result 87, Processing Time 0.027 seconds

A Study on Characteristic of Hybrid PCS for Solar Power Generation Considering on a Residential Lithium Battery ESS. (가정용 리튬배터리 ESS를 고려한 태양광 발전 하이브리드 PCS 특성에 관한 연구)

  • Hwang, Lark-Hoon;Na, Seung-kwon;Choi, Byung-Sang
    • Journal of Advanced Navigation Technology
    • /
    • v.26 no.1
    • /
    • pp.35-45
    • /
    • 2022
  • In this paper, we modeled the devices used easily in PV system circuits. In addition, for full operation of the photovoltaic system, a complete operation system for the DC-DC buck-boost converter and the MPPT control system was modeled and simulated to confirm good operation. we were constructed an actual system with the same conditions in the simulation and experimented. The purpose is to confirm the stable power supply through the load leveling by presenting the PCS considering ESS of photovoltaic power generation. we will do study to apply hybrid capacitors that have high energy density to the same size compared to the EDLC to DVR. As a result, we proposed a single-phase 3 kW grid-connected solar power converter.

A fully UHF-powered smart sensor tag in food freshness monitoring (음식물 신선도 모니터링을 위한 풀 패시브 UHF 스마트 센서 태그)

  • Lam, Binh Minh;Chung, Wan-Young
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.19 no.3
    • /
    • pp.89-96
    • /
    • 2018
  • This study aims to develop a fully passive smart sensing tag utilizing RF (Radio Frequency) energy harvesting technology at UHF (Ultra High Frequency) band of 915MHz. To optimize the power collected under various radiated conditions, an efficient energy harvesting module exploiting a boost circuit with maximum power point tracking (MPPT) is employed. Specifically, the proposed tag features two orthogonal antennas to enhance its capability of both energy scavenging and data transmissions. The experimental result shows that the developed smart sensor tag can scavenge an RF input power of as low as 0.19mW at a distance of 4 meters for a 3.6Vdc output. Furthermore, the proposed smart sensor tag performs the feasibility of completely autonomous monitoring food freshness at 2 meters with a low-power sensor array.

Maximum Efficiency Point Tracking Control Algorithm for Improving Electric Power Transmission Efficiency between Photovoltaic Power Generating system and the Grid (태양광발전시스템과 계통간의 전력 전송 효율 개선을 위한 최대효율점 추적 제어 알고리즘)

  • Kwon, Cheol-Soon;Kim, Kwang Soo;Do, Tae Young;Park, Sung-Jun;Kang, Feel-Soon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.3
    • /
    • pp.342-348
    • /
    • 2013
  • It proposes an efficient control algorithm to increase electric power transmission efficiency between photovoltaic power generating system and the grid. The main controller finds a maximum efficiency condition by considering the quantity of power generated from PV arrays, the number of inverters, and efficiency of PV inverter. According to the condition, a relay board arranges a point of contract of PV arrays. By the disposition of PV arrays, it assigns the optimized power on each PV inverter. Operational principle of the proposed maximum efficiency point tracking algorithm is given in detail. To verify the validity of the proposed approach, computer-aided simulation and experiment carried out.

PSCAD/EMTDC Based Modeling and Simulation Analysis of a Grid-Connected Photovoltaic Generation System (PSCAD/EMTDC를 미용한 계통연계형 태양광발전시스템의 모델링 및 모의 해석)

  • Jeon Jin-Hong;Kim Eung-Sang;Kim Seul-Ki
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.54 no.3
    • /
    • pp.107-116
    • /
    • 2005
  • The paper addresses modeling and analysis of a grid-connected photovoltaic generation system (PV system). PSCAD/EMTDC, an industry standard simulation tool for studying the transient behavior of electric power system and apparatus, is used to conduct all aspects of model implementation and to carry out extensive simulation study. This paper is aimed at sharing with the PSCAD/EMTDC user community our user-defined model for PV system applications, which is not yet available as a standard model within PSCAD/EMTDC. An equivalent circuit model of a solar cell has been used for modeling solar array. A series of parameters required for array modeling have been estimated from general specification data of a solar module. A PWM voltage source inverter (VSI) and its current control scheme have been implemented. A maximum power point tracking (MPPT) technique is employed for drawing the maximum available energy from the PV array. Comprehensive simulation results are presented to examine PV array behaviors and PV system control performance in response to irradiation changes. In addition, dynamic responses of PV array and system to network fault conditions are simulated and analysed.

Boost Converter Modelling of Photovoltaic Conditioning System Considering Input Capacitor (입력 커패시턴스를 포함한 PV Boost Converter 모델링)

  • Choi, Ju-Yeop;Lee, Ki-Ok;Choy, Ick;Song, Seung-Ho;Yu, Gwon-Jong
    • Journal of the Korean Solar Energy Society
    • /
    • v.28 no.5
    • /
    • pp.85-95
    • /
    • 2008
  • Photovoltaic conditioning systems normally use a maximum power point tracking (MPPT) technique to deliver the highest possible power to the load continuously when variations occur in the insolation and temperature. A unique method of tracking the maximum power points (MPPs) and forcing the boost converter system to operate close to these points is presented through deriving small-signal model and transfer function of boost converter considering input capacitor. This paper aims at modeling boost converter including fairly large equivalent series resistance(ESR) of input reservoir capacitor by state-space-averaging method and PWM switch model. In the future, properly designed controller for compensation will be constructed in 3kw real system for maximum photovoltaic power tracking control.

Maximum Power Point Tracking Technique of PV System for the Tracking of Open Voltage accoding to Solar Module of Temperatur Influence (태양광 모듈 온도 영향에 따른 개방전압 추종을 위한 PV 시스템의 최대 전력 점 추종 기법)

  • Seo, Jung-Min;Lee, Woo-Cheol
    • Proceedings of the KIPE Conference
    • /
    • 2020.08a
    • /
    • pp.4-6
    • /
    • 2020
  • 태양광 모듈은 일사량과 온도에 의해 P-V 및 I-V의 특성이 변하여 최대 전력 점 추종 기업(MPPT, Maximum Power Point Tracking)이 필요하다. 기존의 기법들의 경우 모듈의 온도로 인해 개방전압이 변하거나 음영이 발생하면 태양광 모듈의 최대 전력 점을 추종하지 못한다. 본 논문에서는 태양광 패널에서의 P-V 및 I-V의 상관관계와 온도 변화에 대한 태양광 모듈의 최대 전력 점을 추종하는 기법을 제안한다. 본 논문에서 제안된 제어기법은 3kW 태양광 인버터 시스템을 구성하여 시뮬레이션을 통해 타당성을 검증하였다.

  • PDF

KAUSAT-5 Development and Verification based on 3U Cubesat Standard Platform (3U 큐브위성 표준 플랫폼에 기반한 한누리 5호 개발 및 검증)

  • Song, Sua;Lee, Soo-Yeon;Kim, Hong-Rae;Chang, Young-Keun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.45 no.8
    • /
    • pp.686-696
    • /
    • 2017
  • The major objective of this study is to develop and verify the KAUSAT-5 based on the modular 3U CubeSat standard platform. In the mechanical system design of a 3U standard platform, subsystem and micro equipment functions/performance should be integrated and miniaturized on micro-sized PCBs and electrical capability was maximized to accommodate multiple payloads. KAUSAT-5 is 3U-sized Cubesat which will be operated in Low Earth Orbit(LEO), which implements mainly two scientific missions; one is to observe the Earth through infrared camera and the other is to measure space radiation with a Geiger Muller tube. An additional mission is to verify the equipment(device) such as VSCMG and fuzzy logic-based MPPT internally developed. The results of ETB, qualification and acceptance level environmental tests were shown to verify standard platform and KAUSAT-5 Cubesat.

Maximum Power Point Tracking Controller Connecting PV System to Grid

  • Ahmed G. Abo-Khalil;Lee Dong-Choon;Choi Jong-Woo;Kim Heung-Geun
    • Journal of Power Electronics
    • /
    • v.6 no.3
    • /
    • pp.226-234
    • /
    • 2006
  • Photovoltaic (PV) generators have nonlinear V-I characteristics and maximum power points which vary with illumination level and temperature. Using a maximum power point tracker (MPPT) with an intermediate converter can increase the system efficiency by matching the PV systems to the load. This paper presents a maximum power point tracker based on fuzzy logic and a control scheme for a single-phase inverter connected to the utility grid. The fuzzy logic controller (FLC) provides an adaptive nature for system performance. Also the FLC provides excellent features such as fast response, good performance and the ability to change the fuzzy parameters to improve the control system. A single-phase AC-DC inverter is used to connect the PV system to the grid utility and local loads. While a control scheme is implemented to inject the PV output power to the utility grid at unity power factor and reduced harmonic level. The simulation results have shown the effectiveness of the proposed scheme.

Development of Wind Turbine Simulator Using 3kW PMSG (3kW 영구 자석형 동기발전기를 이용한 풍력 터빈 시뮬레이터 개발)

  • Choi, Wonshik;Oh, Joongki;Park, Kihyun;Park, Hyunchul
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.182.1-182.1
    • /
    • 2010
  • 본 논문에서는 3kW 영구 자석형 동기발전기(PMSG)를 이용한 풍력 터빈 시뮬레이터 개발에 대해 기술하였다. 풍력발전 시스템은 블레이드를 포함한 회전부, 동력 전달부, 발전기, 전력변환기로 크게 나눌 수 있으며, 시뮬레이터는 유도 모터와 PMSG, 인버터-컨버터와 제어 시스템으로 이루어진다. 시뮬레이터를 운전하기 위해서는 특정 속도의 바람 모델을 적용하여 풍력 발전기의 회전부에 걸리게 되는 토크와 회전 속도 값이 요구된다. 풍력 터빈 모델로부터 계산값을 시뮬레이터에 맞게 스케일링하여 유도 모터를 구동 한다. 발전기측 컨버터는 MPPT(Maximum Power Point Tracking) 알고리즘을 통해 제어하고 계통측 인버터는 유효 전력과 무효 전력을 제어하도록 한다. PSIM과 MATLAB/SIMULINK를 이용하여 컴퓨터 시뮬레이션으로 그 결과를 증명하였다.

  • PDF

A Study on Solar Cell Output Voltage Control for 3-Phase Utility Interactive Photovoltaic System (3상 계통연계형 태양광발전시스템의 태양전지 출력단 전압제어에 관한 연구)

  • Nam J. H.;Kang B. H.;Gho J. S.;Choe G. H.;Shin W. S.
    • Proceedings of the KIPE Conference
    • /
    • 2002.07a
    • /
    • pp.571-575
    • /
    • 2002
  • Generation of electrical energy faces many problems today. Solar power converters were used to convert the electrical energy from the solar arrays to a stable and reliable power source. The object of this paper is to analyze and design DC-DC converters in a solar energy system to investigate the performance of the converters. A DC-DC converter can be commonly used to control the power flow from solar cell to load and to achieve maximum power point tracking(MPPT), DC-AC converter can also be used to modulate the DC power to AC power being applied on common utility load. A DC-DC converter is used to boost the solar cell voltage to constant 360(V) DC link and to ensure operation at the maximum power point tracking, If a wide input voltage range has to be covered a boost converter is required. In this paper, author described that simulation and experimental results of PV system contain solar modules, a DC-DC converter(boost type chopper), a DC-AC converter (3-phase inverter) and resistive loads.

  • PDF