• 제목/요약/키워드: 3-phase AC-DC converter

검색결과 181건 처리시간 0.03초

A New Modular 3-phase AC-DC Flyback Converter for Telecommunication

  • Choi, J.Y.;Lee, J.P.;Choy, I.;Song, J.H.;Kim, T.Y.
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 1998년도 Proceedings ICPE 98 1998 International Conference on Power Electronics
    • /
    • pp.790-796
    • /
    • 1998
  • A novel mode of parallel operation of a modular 3-phase AC-DC flyback converter for power factor correction along with tight regulation was recently analyzed and presented. The advantage of the proposed converter does not require expensive high voltage and high current devices that are normally needed in popular boost type 3-phase converter. In this paper the detailed small signal analysis of the modular 3-phase AC-DC flyback converter is provided for control purposes and also experimental results are included to confirm the validity of the analysis.

  • PDF

입력전류 주입을 이용한 3상 AC/DC/AC PWM 컨버터의 직류링크 커패시터 용량 추정 (Capacitance Estimation of DC-Link Capacitors of Three-Phase AC/DC/AC PWM Converters using Input Current Injection)

  • 이강주;이동춘;석줄기
    • 전력전자학회논문지
    • /
    • 제8권2호
    • /
    • pp.173-179
    • /
    • 2003
  • 본 논문은 3상 PWM 컨버터의 커패시터의 용량을 온라인으로 추정하는 새로운 기법을 제안한다. 무부하 상태의 PWM 컨버터에 저주파수의 입력전류를 주입하면 직류링크단에 이에 대응되는 리플전압이 발생된다. 직류링크단의 리플전압과 전류를 검출하여 커패시터의 용량을 계산한다. 제안된 방법에 의해 계산된 커패시터의 용량의 추정오차는 2% 이내이다.

3상 AC-DC 승압형 컨버터를 이용한 SOC 추정 기반의 효율적 배터리 충전 알고리즘 (An Efficient Battery Charging Algorithm based on State-of-Charge Estimation using 3-Phase AC-DC Boost Converter)

  • 이정효;원충연
    • 조명전기설비학회논문지
    • /
    • 제29권9호
    • /
    • pp.96-102
    • /
    • 2015
  • This paper presents battery charging method using 3-phase AC-DC boost converter. General battery charging method is that charging the battery voltage to the reference voltage according to the constant current(CC) control, when it reaches the reference voltage, charging the battery fully according to the constant voltage(CV) control. However, battery chaging time is increased because of the battery impedance, constant current charging section which shoud take the large amount of charge is narrow, and constant voltage charging section which can generate insufficient charge is widen. To improve this problem, we proposes the method to reduce the charging time according to the SOC(State of Charge) estimation using battery impedance.

배터리 팩 시험기용 3상 AC/DC 컨버터에서의 SiC 및 Si 소자에 대한 손실 비교 분석 (Comparision Analysis of SiC and Si Loss in 3-Phase AC/DC Converter for Battery Pack Testing System)

  • 박세희;현승욱;성호재;원충연
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2017년도 전력전자학술대회
    • /
    • pp.363-364
    • /
    • 2017
  • This paper analyzes switching losses and efficiency depending on SiC and Si devices applied in 3-phase AC/DC Converter for Battery Pack Testing System. The switch elements of the 3-phase AC/DC Converter is compared to Si and SiC-based elements and analyzed through comparison of each switching loss by simulation results.

  • PDF

Mitigation of Low Frequency AC Ripple in Single-Phase Photovoltaic Power Conditioning Systems

  • Lee, Sang-Hoey;An, Tae-Pung;Cha, Han-Ju
    • Journal of Power Electronics
    • /
    • 제10권3호
    • /
    • pp.328-333
    • /
    • 2010
  • A photovoltaic power conditioning system (PV PCS) that contains single-phase dc/ac inverters tends to draw an ac ripple current at twice the output frequency. Such a ripple current perturbs the operating points of solar cells continuously and it may reduce the efficiency of the current based maximum power point tracking technique (CMPPT). In this paper, the ripple current generation in a dc link and boost inductor is analyzed using the ac equivalent circuit of a dc/dc boost converter. A new feed-forward ripple current compensation method to incorporate a current control loop into a dc/dc converter for ripple reduction is proposed. The proposed feed-forward compensation method is verified by simulation and experimental results. These results show a 41.8 % reduction in the peak-to peak ac ripple. In addition, the dc/ac inverter control system uses an automatic voltage regulation (AVR) function to mitigate the ac ripple voltage effect in the dc link. A 3kW PV PCS prototype has been built and its experimental results are given to verify the effectiveness of the proposed method.

3상 계통연계형 태양광발전시스템의 태양전지 출력단 전압제어에 관한 연구 (A Study on Solar Cell Output Voltage Control for 3-Phase Utility Interactive Photovoltaic System)

  • 남종하;강병희;고재석;최규하;신우석
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2002년도 전력전자학술대회 논문집
    • /
    • pp.571-575
    • /
    • 2002
  • Generation of electrical energy faces many problems today. Solar power converters were used to convert the electrical energy from the solar arrays to a stable and reliable power source. The object of this paper is to analyze and design DC-DC converters in a solar energy system to investigate the performance of the converters. A DC-DC converter can be commonly used to control the power flow from solar cell to load and to achieve maximum power point tracking(MPPT), DC-AC converter can also be used to modulate the DC power to AC power being applied on common utility load. A DC-DC converter is used to boost the solar cell voltage to constant 360(V) DC link and to ensure operation at the maximum power point tracking, If a wide input voltage range has to be covered a boost converter is required. In this paper, author described that simulation and experimental results of PV system contain solar modules, a DC-DC converter(boost type chopper), a DC-AC converter (3-phase inverter) and resistive loads.

  • PDF

빌딩용 직류배전 시스템의 3상 AC/DC 컨버터의 기동 시 과도상태 응답 개선 (Transient Response Improvement at Startup of Three Phase AC/DC Converter for DC Distribution System in Building Applications)

  • 신수철;이희준;이정효;나종국;원충연
    • 전력전자학회논문지
    • /
    • 제18권2호
    • /
    • pp.138-144
    • /
    • 2013
  • Most of the DC loads have had the sensitive characteristics electrically for input voltage. In this system, power converter is operated after connecting with DC loads to minimize the overshoot of the control voltage that may occur during connection of the loads. But whenever starting the power converter, parameters in circuit are different because power converter has been connected with diverse load types at each startup time. This is cause of a disadvantage to PI controller design of power converter. In this paper, the novel voltage control method using sliding mode control theory has proposed. This control method minimizes the overshoot of control voltage at startup of power converter. Despite the variations of the system parameters, the proposed voltage controller has fast response and robustness characteristics such as PI and sliding mode controllers. The proposed controller was applied to the three-phase AC/DC converter and each performance of controller was verified.

Three-Phase AC-to-DC Resonant Converter Operating in High Power Factor Mode in High-Voltage Applications

  • Chaudhari, Madhuri A.;Suryawanshi, Hiralal M.;Kulwal, Abhishek;Mishra, Mahesh K.
    • Journal of Power Electronics
    • /
    • 제8권1호
    • /
    • pp.60-73
    • /
    • 2008
  • In this paper a three-phase ac-to-dc resonant converter with high input power factor and isolated output is proposed. To improve the input power factor of the converter, high frequency current is injected into the input of the three-phase diode bridge rectifier. It is injected through an impedance network consisting of a series of L-C branches from the output of the high frequency three-phase inverter. A narrow switching frequency variation is required to regulate the output voltage. A design example with different design curves is illustrated along with the component ratings. Experimental verification of the converter is performed on a prototype of 3 kW, 1000 V output, operating above 300 kHz. Experimental results confirm the concept of the proposed converter. Narrow switching frequency variation is required to regulate the output voltage.

직접전력변환 방식을 이용한 전압 강하/상승 보상기의 구현 (Implementation of Voltage Sag/Swell Compensator using Direct Power Conversion)

  • 이상회;차한주;한병문
    • 전기학회논문지
    • /
    • 제58권8호
    • /
    • pp.1544-1550
    • /
    • 2009
  • In this paper, a new single phase voltage sag/swell compensator using direct power conversion is proposed. A new compensator consists of input/output filter, series transformer and direct ac-ac converter, which is a single-phase back-to-back PWM converter without dc-link capacitors. Advantages of the proposed compensator include: simple power circuit by eliminating dc link electrolytic capacitors and thereby, improved reliability and increased life time of the entire compensator; simple PWM strategy or compensating voltage sag/swell at the same time and reduced switching losses in the ac-ac converter. Further, the proposed scheme is able to adopt simple switch commutation method without requiring complex four-step commutation method that is commonly employed in the direct power conversion. Simulation and experimental results are shown to demonstrate the advantages of the new compensator and PWM strategy. A 220V, 3kVA single-phase compensator based on the digital signal processor controller is built and tested.

사파이어 실리콘 결정 성장용 80kW 10kA PWM 컨버터 시스템 개발 (Development of PWM Converter System for Sapphire Silicon Ingot Glowing of 80kW 10kA)

  • 김민회;박영식
    • 조명전기설비학회논문지
    • /
    • 제28권11호
    • /
    • pp.33-41
    • /
    • 2014
  • This paper is research result for a development of sapphire silicon ingot glowing(SSIG) PWM converter system for 80kW 10kA. The system include 3-phase AC-DC diode rectifier of input voltage AC 380V and 60Hz, DC-AC single phase full bridge PWM inverter of high frequency, AC-DC single-phase full wave rectifier using center-tapped of transformer for low voltage 8.0V and large current 10,000A of output specification, tungsten resistor load 0.1[$m{\Omega}$]. PWM switching frequency for IGBT inverter control set 30kHz. The suggested researching contents are designed data sheets of power converter system, PSIM simulation, operating characteristics and analysis results of developed SSIG system. This paper propose