• Title/Summary/Keyword: 3-parameter Equation of State

Search Result 69, Processing Time 0.024 seconds

Estimation of Seepage Rate through Core Zone of Rockfill Dam (중심코어형 사력댐의 코어죤 침투량 예측기법)

  • Lee, Jong-Wook;Lim, Heui-Dae
    • Journal of the Korean Geotechnical Society
    • /
    • v.26 no.4
    • /
    • pp.47-58
    • /
    • 2010
  • Seepage rate through the core zone of rockfill dam, estimated from graphical technique and the equation by Sakamoto (1998), is different from the real condition because of neglecting unsaturated flow. With existing method to estimate total seepage rate, it is difficult to understand the tendency of total seepage rate changes by reservoir water level change. Steady state seepage rate and the factors affecting the time needed to attain to changes of reservoir water level and saturated hydraulic conductivity and unsaturated hydraulic properties of core material are analysed thorough the 2-D steady and unsteady state seepage analyses of Soyanggang dam. Numerical results revealed that the seepage rate can be expressed by the linear equation form and the value of unsaturated soil parameter n is the most important factor affecting the seepage rate and the time needed to attain steady state. The estimation method presented in this study can be used by the designer and the personnel of dam safety for convenient estimation of seepage rate and quantitative analysis of measured seepage rate without 2-D and 3-D numerical analyses.

Analytical Techniques for Measurement of Crosslink Densities of Rubber Vulcanizates

  • Son, Chae Eun;Choi, Sung-Seen
    • Elastomers and Composites
    • /
    • v.54 no.3
    • /
    • pp.209-219
    • /
    • 2019
  • It is important to analyze crosslink densities of rubber articles because the physical properties are dependent on the crosslink densities. In this paper, analytical techniques for the measurement of crosslink densities of rubber vulcanizates are described. The most widely used method to measure the crosslink density is a swelling method combined with the Flory-Rehner equation. Application of the interaction parameter (${\chi}$) of rubber and swelling solvent is critical because the crosslink density is absolutely dependent on the ${\chi}$ value. Methods for obtaining ${\chi}$ employ not only solubility parameters of the polymer and swelling solvent but also inverse gas chromatography (IGC). The solubilities of rubbers can be obtained using micro differential scanning calorimetry (${\mu}DSC$), intrinsic viscosity measurement, and UV-visible spectroscopy. Nuclear magnetic resonance (NMR) spectroscopy has been also used for the measurement of the crosslink density using the $T_2$ relaxation time, which is determined by spin-spin relaxation in solid-state NMR. For sulfur-cured rubber vulcanizates, crosslink densities according to the crosslink types of mono-, di-, and polysulfides are measured by treating the rubber samples with a chemical probe composed of thiol and amine compounds. Measurement methods of physical crosslinking by filler, crystallization, and ionic bonding have also been introduced.

Nonclassical Chemical Kinetics for Description of Chemical Fluctuation in a Dynamically Heterogeneous Biological System

  • Lim, Yu-Rim;Park, Seong-Jun;Lee, Sang-Youb;Sung, Jae-Young
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.3
    • /
    • pp.963-970
    • /
    • 2012
  • We review novel chemical kinetics proposed for quantitative description of fluctuations in reaction times and in the number of product molecules in a heterogeneous biological system, and discuss quantitative interpretation of randomness parameter data in enzymatic turnover times of ${\beta}$-galactosidase. We discuss generalization of renewal theory for description of chemical fluctuation in product level in a multistep biopolymer reaction occurring in a dynamically heterogeneous environment. New stochastic simulation results are presented for the chemical fluctuation of a dynamically heterogeneous reaction system, which clearly show the effects of the initial state distribution on the chemical fluctuation. Our stochastic simulation results are found to be in good agreement with predictions of the analytic results obtained from the generalized master equation.

Double DOF control of an electromechanical integrated toroidal drive

  • Xu, Lizhong;Liu, Xin
    • Smart Structures and Systems
    • /
    • v.3 no.1
    • /
    • pp.115-131
    • /
    • 2007
  • The electromechanical integrated toroidal drive is a new drive system. For the control of the drive, the torque fluctuation and the steady-state errors should be removed and the fast response to the input change should be achieved. In this paper, the torque fluctuation of the drive system is analyzed and expressed as Fourier series forms. The transfer function of the torque control for the drive system is derived from its electromechanical coupled dynamic equations. A 2-DOF control method is used to control the drive system. Using definite parameter relationship of the 2-DOF control system, the steady errors of the torque control for the drive system is removed. Influences of the drive parameters on the control system are investigated. Using proper drive parameters, the response time of the control system is reduced and the quick torque response of the drive system is realized. Using a compensated input voltage, the torque fluctuation of the drive system is removed as well. The compensated input voltage can be obtained from the torque fluctuation equation and the transfer function. These research results are useful for designing control system of the new drive.

Fuzzy Modeling and Control of Differential Driving Wheeled Mobile Robot: To Achieve Performance Objective

  • Kang, Jin-Shig
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.3 no.2
    • /
    • pp.166-172
    • /
    • 2003
  • The dynamics of the DDWMR depends on the velocity difference of the two driving wheels. And which is known as a type of non-holonomic equation. By this reason, the treatment of DDWMR had become difficult and conservative. In this paper, the differential-driving wheeled mobile robot is considered. The Takaki-Surgeno fuzzy model and a control method for DDWMR is presented. The suggested controller has three control elements. The first element is fuzzy state feedback designed for eliminating the dependence of time-varying parameter. The second element is weighting controller which is designed for good frequency response. The third controller is PI-controller which is designed for good command following and robustness with un-modeled dynamics. In order for achieving the performance objective, the design of controller is based on the loop-shaping algorithm.

Effects of Anisotropic Consolidation on the Postcyclic Undrained Shear Strength of an Overconsolidated Clay (이방압밀이 반복하중을 받은 과압밀점토의 비배수전단강도에 미치는 영향)

  • Gang, Byeong-Hui;Yun, Hyeong-Seok;Park, Dong-Jin
    • Geotechnical Engineering
    • /
    • v.14 no.1
    • /
    • pp.37-48
    • /
    • 1998
  • The effects of consolidation stress history including consolidation stress ratio, OCR and cyclic loading with drainage on the undrained shear strength of cohesive soil were investig toted. The ratio$(S_u/\sigma'_{vc})ckou/(S_U/\sigma_{vc})cuv$ was observed to increase with increasing OCR. The equation (1) in this paper by Mayne(1980) for the undrained shear strength of the overconsolidated clay and the equation (4) by Yasuhara(1994), for the postcyclic shear strength were found to be relatively well applicable in the case of Kofonsolidated. It was also suggested that the value of the critical state pore pressure parameter As in these two equations for the in situ shear strength of lightly overconsolidated clay(OCR< 3) be obtained by the standard consolidating test.

  • PDF

Mathematical Modelling and Chaotic Behavior Analysis of Cyber Addiction (사이버 중독의 수학적 모델링과 비선형 거동 해석)

  • Kim, Myung-Mi;Bae, Young-Chul
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.24 no.3
    • /
    • pp.245-250
    • /
    • 2014
  • Addiction can be largely divided into two categories. One is called medium addiction in which medium itself causes an addiction. Another is called cause addiction that brings addiction through combination of sensitive self and latent personal action. The medium addiction involves addiction phenomena directly caused by illegal drugs, alcohol and various other chemicals. The cause addiction is dependent on personal sensitivities as a sensitive problem of personal and includes cyber addictions such as shopping, work, game, internet, TV, and gambling. In this paper we propose two-dimensional addiction model that are equivalent to using an R-L-C series circuit of Electrical circuit and a Spring-Damper-mass of mechanical system. We also organize a Duffing equation that is added a nonlinear term in the proposed two-dimensional addiction model. We represent periodic motion and chaotic motion as time series and phase portrait according to parameter's variation. We confirm that among parameters chaotic motion had addicted state and periodic motion caused by change in control coefficient had pre-addiction state.

A Study on the Stabilization Process of Tensegrity System using the Force Density Method (내력밀도법을 이용한 텐세그러티 구조물의 안정화 기법에 관한 연구)

  • Sur, Sam-Yeol;Koh, Kwang-Ung
    • Journal of Korean Association for Spatial Structures
    • /
    • v.3 no.4 s.10
    • /
    • pp.77-84
    • /
    • 2003
  • Tensegrity systems are stable structures which are reticulated spatial structures composed of compressive straight members, struts and cables. But there are some difficulties concerning surface stability, surface formation and construction method. One of the ways to solve this problem reasonably is combination of tesile members and rigid members. This structure is a type of flexible strutural system which is unstable initially because the cable material has little initial rigidity. Therefore tensegrity structure need to be introduced to the Initial stress for the self-equilibrated system having stable state. The rigidification of tensegrity systems is related to selfstress states which can be achieved only when geometrical and mechanical requirements are simultaneously satisfied. In this paper, for the stabilization of tesnsegrity structure it is proposed the modified self-equilibrated equation and the range of the various geometrical parameter about unit system. And we generate the model of double layed single curvature arch using the new squew quadruplex unit system.

  • PDF

Calculation of Fuel Spray Impingement and Fuel Film Formation in an HSDI Diesel Engine

  • Kyoungdoug Min;Kim, Manshik
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.3
    • /
    • pp.376-385
    • /
    • 2002
  • Spray impingement and fuel film formation models with cavitation have been developed and incorporated into the computational fluid dynamics code, STAR-CD. The spray/wall interaction process was modeled by considering the effects of surface temperature conditions and fuel film formation. The behavior of fuel droplets after impingement was divided into rebound, spread and splash using the Weber number and parameter K(equation omitted). The spray impingement model accounts for mass conservation, energy conservation, and heat transfer to the impinging droplets. The fuel film formation model was developed by integrating the continuity, momentum, and energy equations along the direction of fuel film thickness. Zero dimensional cavitation model was adopted in order to consider the cavitation phenomena and to give reasonable initial conditions for spray injection. Numerical simulations of spray tip penetration, spray impingement patterns, and the mass of film-state fuel matched well with the experimental data. The spray impingement and fuel film formation models have been applied to study spray/wall impingement in high-speed direct injection diesel engines.

EFFECT OF NEGATIVE FEEDBACK LOOP WITH NRF1 AND MIR-378 OF NONALCOHOLIC FATTY LIVER DISEASE: A MATHEMATICAL MODELING APPROACH

  • Lee, SiEun;Shin, Kiyeon
    • East Asian mathematical journal
    • /
    • v.36 no.3
    • /
    • pp.365-376
    • /
    • 2020
  • Nonalcoholic fatty liver is a type of fatty liver in which fat accumulates in the liver without alcohol. In the accumulation, Nrf1 and miR-378 genes play very important role, so called negative feedback loop, in which the two genes suppress the other's production. In other words, Nrf1 activates fatty acid oxidation which promotes fat consumption in the liver, while miR-378 deactivates fatty acid oxidation. Thus, both genes regulate nonalcoholic fatty liver. In this paper, the negative feedback loop of Nrf1 and miR-378 are expressed by a system of ordinary differential equations. And, bifurcation simulation shows the change in the amount of each gene with significant parameter range changes. Bifurcation simulation has also used to determine the thresholds for transit between disease and steady state.