
Nonclassical Chemical Kinetics for Description of Chemical Fluctuation  Bull. Korean Chem. Soc. 2012, Vol. 33, No. 3     963

http://dx.doi.org/10.5012/bkcs.2012.33.3.963

Nonclassical Chemical Kinetics for Description of Chemical Fluctuation in

a Dynamically Heterogeneous Biological System†

Yu Rim Lim, Seong Jun Park, Sangyoub Lee,‡ and Jaeyoung Sung*

Department of Chemistry, Chung-Ang University Seoul 156-756, Korea. *E-mail: jaeyoung@cau.ac.kr
‡Department of Chemistry, Seoul National University, Seoul 151-742, Korea

Received December 5, 2011, Accepted November 26, 2011

We review novel chemical kinetics proposed for quantitative description of fluctuations in reaction times and

in the number of product molecules in a heterogeneous biological system, and discuss quantitative

interpretation of randomness parameter data in enzymatic turnover times of β-galactosidase. We discuss

generalization of renewal theory for description of chemical fluctuation in product level in a multistep

biopolymer reaction occurring in a dynamically heterogeneous environment. New stochastic simulation results

are presented for the chemical fluctuation of a dynamically heterogeneous reaction system, which clearly show

the effects of the initial state distribution on the chemical fluctuation. Our stochastic simulation results are

found to be in good agreement with predictions of the analytic results obtained from the generalized master

equation. 
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Introduction

A chemical reaction is, in principle, a stochastic process

and the number of the product molecules generated in a time

interval is a random variable with a time-dependent pro-

bability distribution. While being negligible in a macroscopic

reaction system, stochastic nature of chemical reactions in

such small reactor as a biological cell has important conse-

quences on cell-to-cell variation in the level of important

biomolecules including m-RNA and regulatory proteins that

control cell’s biological function, its decision making, and its

ultimate fate.1-5 For a chemical reaction with a constant reac-

tion rate, Master equation approach or Gillespie’s stochastic

simulation approach could provide a correct description for

the time-evolution of the number distribution of reaction

events or product molecules.6,7 However, it is not clear

whether the conventional approaches within the paradigm of

the rate constant concept are applicable to biological

reactions with a dynamically heterogeneous distribution of

reaction rates. 

Modern single molecule experimental studies tell us that

the rate of a biopolymer reaction keeps fluctuating in line

with the conformational dynamics of the biopolymer even in

a highly controlled homogeneous reaction environment.8,9

For biopolymer reactions occurring in cells, reaction rates

are different from cell to cell due to heterogeneous environ-

ments posed by cells, which adds additional complexity in

quantitative description for the probabilistic outcome of

reactions in cells.10 However, with the advance of single

molecule experiments, observation of individual reaction

trajectories has been made possible for various biopolymer

reactions including stepping of a single molecular motor,11

catalytic turnover of a single enzyme,8,9 the gene expression

from a DNA,10 and single molecule DNA sequencing.12,13

Individual reaction trajectories recorded in these single

molecule experiments constitute ideal data for investigation

of probabilistic dynamics of the biopolymer reaction

systems.

As far as the average behavior of those reaction trajec-

tories concerned, the conventional chemical kinetics pro-

vides a satisfactory description. For example, the average

velocity of kinesin motors and the mean enzymatic turnover

time of β-galactosidase turn out consistent with the Michaelis-

Menten (MM) relation derived from the conventional

chemical kinetics for the simple MM enzyme reaction

scheme.9,14 It is now known that the average enzymatic

turnover time obeys the MM relation for a variety of

different models of enzyme reactions involving reaction rate

fluctuation.15-17 Recently, a generalized MM relation is

established for the mean turnover time of a general multi-

state enzyme reaction model, which reduces to the MM

relation whenever the detailed balance condition between

different states is satisfied.18

However, the conventional chemical kinetics is not so

satisfactory in description of statistical fluctuations contained

in biopolymer reaction trajectories.8,9 For example, the

enzymatic turnover time distribution of β-galactosidase

enzyme and the waiting time distribution of kinesin motors

look inconsistent with the prediction of the conventional

chemical kinetics for the simple MM reaction scheme.9,11 A

while ago, the variance in the time-dependent positions of a

kinesin motor could be successfully explained by assuming

multiple intermediate biochemical states in each step of the

kinesin motor, which shows that the statistical distribution of

waiting times between steps of a kinesin motor is a non-
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exponential function.19 Recently, a general quantitative

description of fluctuations in single enzymatic turnover

times was also achieved,17,18,20 for which a generalization of

chemical kinetics was made in description of non-Poisson

reaction processes of enzyme-substrate (ES) complex.16,21

In the next section, we will review several theories given

for quantitative description of fluctuations in single enzymatic

turnover time distribution, and compare predictions of these

theories to experimental data obtained for single β-galac-

tosidase enzyme. It turns out that one of the theories could

provide an excellent quantitative description for the ran-

domness parameter data reported in ref. 9. For the successful

quantitative analysis of the randomness parameter data of

the enzyme reaction, we find it natural to go beyond the

conventional chemical kinetics in which each and every

elementary reaction process composing a reaction is a simple

rate process or a simple Poisson process; the randomness

parameter data could not be explained with assumption that

the reaction processes of enzyme-substrate (ES) complex are

simple rate processes. In the subsequent section, with a brief

review of reaction event counting statistics for a couple of

important models of stochastic chemical reaction processes,

we will present exact expressions for chemical fluctuation or

the number distribution of the product molecules for a

general model of multistep biopolymer catalysis occurring

in a dynamically heterogeneous environment. In the next

section, we will introduce a new stochastic simulation

method for dynamically heterogeneous reaction system, and

investigate the effects of the initial state distribution on the

probabilistic outcome of the dynamically heterogeneous

reaction system. The simulation results are found to be in

perfect agreement with predictions of the analytic results

obtained from the generalized master equation. The time-

dependence of the chemical fluctuation of the biopolymer

system with a nonequilibrium initial condition turns out

qualitatively different from that predicted by renewal

statistics, but the probabilistic outcome of the biopolymer

reaction system with the equilibrium initial condition is

qualitatively the same as that of a renewal reaction process at

long times. 

Fluctuations of Single Enzyme Turnover Times

Recently, a new type of chemical kinetics is developed for

description of a single molecule reaction composed of

possibly non-Poisson elementary reaction processes.16,17 In

this approach, the turnover time distribution ψ(t) of the

single enzyme Michaelis-Menten (MM) reaction is repre-

sented in terms of the reaction time distributions, φ 1
0(t),

φ−1(t), and φ2(t) for the three elementary reaction processes,

, , and . The reac-

tion time distribution (RTD) for each of the elementary

reactions represents the probability density of the time

elapsed for a completion of the elementary reaction process.

The precise definition of φ 1
0(t)dt is the probability that the

enzyme-substrate association reaction, E + S → ES, is com-

pleted in time interval (t, t + dt), given that the reaction begins

at time 0. Here, the superscript 0 in φ 1
0(t) signifies that the

RTD of the enzyme substrate encounter process is normaliz-

ed, i.e. . On the other hand, φ−1(2)(t)dt denotes

the probability that the dissociation (catalytic) reaction of ES

complex is completed in time interval (t, t + dt), given that

the ES complex is prepared at time 0. In contrast to φ 1
0(t),

φ−1(t) or φ2(t) for the dissociation or the catalytic reaction of

the ES complex does not satisfy the normalization condition;

instead  and  are the probability p−1 of

dissociation and the probability p2 of catalytic reaction of the

ES complex, respectively, so that their sum is normalized,

i.e. . The relation of the enzymatic tur-

nover time distribution ψ to the reaction time distributions,

φ1, φ−1, and φ2, of the elementary reaction processes is given

in Laplace domain as follows: 

(1)

In Eq. (1),  denotes the Laplace transform of f (t),

defined by . 

The RTD, φ1
0(t), of the Poisson enzyme substrate encounter

process ( ) is given by .

The RTD, φ−1(t) and φ2(t) for the dissociation (E + S ← ES)

and the catalytic reaction (ES → E + P) of the ES complex are

given by  and  ,

respectively,21 where  denotes the normalized one

channel reaction time distribution for the dissociation

(catalytic reaction) of the ES complex in the absence of the

competing catalytic reaction (dissociation). When both the

dissociation and the catalytic reaction of the ES complex are

Poisson processes,  and  are given by k−1exp(−k−1t)
and k2exp(−k2t), respectively; therefore,  and 

become φ−1(t) = k−1exp[−(k−1 + k2)t] and φ2(t) = k2exp[−(k−1
+ k2)t]. Substituting (u) = k1[S]/(u + k1[S]), (u) = k−1/(u

+ k−1 + k2), and (u) = k2/(u + k−1 + k2) into Eq. (1), one

gets

, (2)

where λ and ξ are given by λ = k1[S] + k−1 + k2 and ξ =

k2k1[S]. The inverse Laplace transform of  given in

Eq. (2), ψ(t), is equal to ψC(t) predicted by the conventional

chemical kinetics; 

. (3)

Here α and β are time-independent constants given by α =

2−1  and β = 2−1 . The mean, 

, of the enzymatic turnover-time distribution

ψC(t) in Eq. (3) is

, (4)

where  and KM are the mean turnover time in the high

substrate concentration limit and the Michaelis-Menten con-

stant given by  and KM = (k−1 + k2)/k1. 

In the single enzyme reaction, the enzyme-substrate en-
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counter process may be approximated as a simple Poisson

process in the steady state. However, the dissociation or the

catalytic reaction of the ES complex may not be a Poisson

process, as the reactivity of the ES complex is dynamically

fluctuating in line with the conformational dynamics of the

ES complex.22 For a given conformation of the ES complex,

the reaction of the ES complex can still be a non-Poisson

process when the substrate or product escape process out of

the enzyme molecule is a complex one involving a number

of different intermediate states and multiple reaction channels.17

Depending on the microscopic reaction dynamics of the ES

complex, the functional form for φ−1(t) and φ2(t) can be

various. However, it is possible to obtain the expression for

the mean <t> and the randomness parameter R of enzymatic

turnover time distribution ψ(t) without assuming a particular

functional form for φ−1(t) and φ2(t). The expression for the

mean of enzymatic turnover time distribution ψ(t) conforms

to the conventional MM equation , which is given by16,17

. (5)

Here  is the average number of dissociation event per

each enzymatic turnover given by  with p−1(2)
being the reaction probability, , of ES complex

for the dissociation (catalytic) reaction, ES → E + S(P). In

Eq. (5), <t−1(2)> denotes the mean dissociation (catalytic)

reaction time of the ES complex in the presence of the

competing catalytic (dissociation) reaction, defined by

. By making comparison between Eq. (5)

and Eq. (4), one can identify KM and < t>min as KM = (k1
< tES>)

−1 and <t>min = <tES>/p2 where < tES> is the mean

lifetime of the ES complex, defined by < tES> = p−1<t−1> +

p2<t2>. On the other hand, the expression for the randomness

parameter R defined by  is much

different from the result of the conventional chemical

kinetics17:

. (6)

Here R∞, η, and x are given by R∞ = p2qES/<tES>
2, η =

2p2<t2>/(R∞<tES>), and x = [S]/KM with qES being defined by

qES = p2(<t2
2> − 2<t2>2) + p−1(<t

2
−1> − 2< t−1><t2>). qES is the

parameter representing the stochastic property of the

reactions of the ES complex. When the dissociation and the

catalytic reaction processes of the ES complex are Poisson

processes, qES vanishes. It is known that qES appearing in R∞

of Eq. (6) assumes a positive value if the reaction processes

of ES complex is a generalized Poisson process of which

rate coefficient, k−1(r) or k2(r), is dependent on microscopic

configuration r of the ES complex. On the other hand, qES
assumes a negative value when the reaction of ES complex

is a multi-step reaction composed of consecutive Poisson

reaction processes, ES F I1 F … F In → E + S(P) with Ik
being the k-th intermediate state during the reaction of ES

complex.17 

Equations (5) and (6) for the mean turnover time and the

randomness parameter hold whether or not the normalized

reaction time distribution φ−1(t)/p−1 for the dissociation

reaction of ES complex is the same as φ2(t)/p2 for the

catalytic reaction. That is to say, in the analysis of the mean

turnover time and the randomness parameter, one can map

the model considered above into the simpler model in which

φ−1(t)/p−1 is the same as φ2(t)/p2. For the latter model, the

physical interpretation of qES and ηR∞ in Eq. (6) become

simpler; qES is the variance <t
2
ES> − <tES>2 of the confor-

mation-dependent mean lifetime of the ES complex and ηR∞

is twice the success probability p2 of the catalytic reaction of

the ES complex. From the analysis of the experimental

randomness parameter data along with the mean turnover

time data with use of the latter model, one can separately

extract values of the following physical parameters, p2,

<tES>, <t
2
ES> − <tES>2, and k1 of the enzyme reaction system.

Until now, we discuss the case where the enzyme system

is ergodic and our observation time is long enough, so that

the observed RTD for every enzyme in the system is the

same. When our reaction system is non-ergodic or when the

observation time is not long enough, each enzyme may have

different RTD from each other during the observation time.

From now on, let us discuss the second moment of RTD of

enzyme reaction for such nonergodic heterogeneous system.

Let our system contain M enzyme molecules, each of which

is under our observation at single molecule level. For the

nonergodic heterogeneous system, the backward RTD

(t) and the forward RTD (t) are dependent on

enzyme index j (1 ≤ j ≤ M). Each individual enzyme reaction

system has its own RTD, ψ i(t), for enzyme reaction, which is

given by Eq. (1) with φ−1 and φ2 being replaced by  and

 for the j-th enzyme molecule. By analyzing reaction

trajectories of each single enzyme molecule, one can obtain

these reaction parameters for each single enzyme. If the

single enzyme reaction system is ergodic and our observa-

tion time is long enough, those reaction parameters should

be the same for every single enzyme. The averages of the

first two moments of RTD over the different enzymes are

defined as <<t>>M =  and <<t2>>M = , where Pj

is the normalized weight accounting for the contribution of

the j-th enzyme. Pj is proportional to the number of reaction

events observed for the j-th enzyme in experiment, and

satisfies the normalization condition, . The first two

moments of the enzymatic turnover time distribution of the

nonergodic heterogeneous enzyme system is given by 

, (7)

(8)

where < x>M denotes the average  of xj over the

enzyme index j. α j, β j, and γ j are defined by α j = <t2>j +
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where x denotes [S]/KM with KM being equal to <β>M/<α>M.

<R>0 and <R>∞ denote  and , respectively

given by 2(<δβ2>M/<β>
2
M) and <γ>M/<α>

2
M − 2. In Eq. (9),

η designates .

Note that the dependence of <R> on [S] given in Eq. (9) for

the non-ergodic, heterogeneous enzyme system is qualitatively

different from R given in Eq. (6) for the homogeneous

ergodic system, especially in the small [S] limit; 

vanishes whereas (≡ <R>0) does not.

We note here that the formula proposed in ref. 9 for the

single enzyme turnover time distribution is correct only for a

heterogeneous nonergodic enzyme reaction system, and this

prediction for the randomness parameter conforms to Eq.

(9). In ref. 9, a generalization of the conventional chemical

kinetics is made, in which a probability distribution w(k2) of

the rate coefficient k2 of the catalytic reaction of the ES

complex is assumed, and the following form of enzymatic

turnover time distribution is suggested: 

. (10)

Noting that the n-th moment   of ψGC(t)

is given by <tn>GC =  with <tn>C being the n-th

moment of ψC(t) given in Eq. (3), one can recover Eq. (4) for the

mean <t>GC of the enzymatic turnover distribution ψGC(t) with

KM in Eq. (4) being replaced by . Here-

after <k2
−n>w is given by <k2

−n>w = . We obtain the

expression of the randomness parameter RCG associated with

ψGC(t) as follows:

. (11)

Here,  and x respectively denote the variance of k2
−1 and

the substrate concentration in unit of KM
GC, i.e.  = <k2

−2>

− <k2
−1>2 and .  and  in Eq. (11) are

defined by  and /(

+ ).

Comparison to Experimental Randomness 

Parameter Data

We make a direct comparison between the predictions of

the above-mentioned theories for the randomness parameter

and the experimental randomness parameter data reported in

ref. 9. Randomness parameter calculated from the conven-

tional chemical kinetics or from Eq. (3), RC (≡ −2p0
2x/(1+x)

2

where p2
0 is given by k2/(k−1 + k2), yields a negative value for

any substrate concentration, inconsistent with the experi-

mental randomness parameter data. In comparison, RGC in

Eq. (11) yields a positive value for the randomness para-

meter. However, the dependence of RGC on substrate con-

centration appears much different from the experimental

randomness parameter data. The randomness parameter RGC

calculated from ψGC(t) looks nearly constant at all substrate

concentrations investigated in ref. 9, whereas the experi-

mental randomness parameter data exhibit a strongly non-

linear behavior. Particularly, the behavior of the randomness

parameter RGC predicted by ψGC(t) is qualitatively different

from the experimental data in the low substrate concentra-

tion regime. RGC yields the following expression for the

randomness parameter R0 in the low substrate concentration

limit,

, (12)

which could not vanish for any probability density function

w(k2) with a finite variance. This fact indicates that ψGC(t)

cannot be the correct enzymatic turnover time distribution of

the β-galactosidase enzyme investigated in ref. 9, for any

choice of w(k2). In producing the curves for RGC, the values

of the adjustable parameters and the functional form of w(k2)

are chosen as given in ref. 9. 

As a matter of fact, ψGC(t) is the exact enzymatic turnover

time distribution for such statically heterogeneous enzymes

in which each enzyme has constant values for rate constants,

k1, k−1, and k2 throughout the experiment but the value of k2
is different from enzyme to enzyme, distributed over the

enzymes according to w(k2). In the latter system, each

enzyme has turnover time distribution ψC(t) with different

value of k2 from each other, and the average of the turnover

time distribution over the enzymes with equal weight for

every enzyme results in ψGC(t). However, the behavior of the

randomness parameter data reported in ref. 9 is inconsistent

with that of the statically heterogeneous enzyme model.

We find that R given in Eq. (6) provides an excellent

quantitative description of the randomness parameter data

unless we set the value of the MM constant, KM, to be the

same as that reported in ref. 9, 23. The values of the ex-

tracted parameters are given by R∞ = 1.57 and η = 0.624, and

 μM, which yield , and /
.

Using the value of 1/<t>min as 730 sec
−1, extracted from

the mean turnover time analysis in ref. 9, we can determine

the value of the mean lifetime <tES> of the ES complex:

R〈 〉
S[ ] 0→
lim R〈 〉

S[ ] ∞→
lim

2 <β<t
2
>>

M
2<δαδβ >M–( )/ <α>M<β>M<R>∞

( )

R
S[ ] 0→
lim

R〈 〉
S[ ] 0→
lim

ψGC t( ) dk2w k2( )ψC t( )∫=
<t n>GC( t

n
ψ

GC
t( ) t)d

0

∞

∫≡
dk

2
w k

2
( )<t n>C∫

KM
GC k

1–
<k

2
1– >

w
1–+( ) k

1
⁄=

dk
2
w k

2
( )k

2
n–

∫

RGC 2
σ
k
2
1–

2

<k 2
1– >2

----------------
1 p 1–

GCx+( )2

1 x+( )2
-------------------------

p2
GCx

1 x+( )2
-----------------–=

σ
k
2
1–

2

σ
k
2
1–

2

x S[ ] KM
GC⁄= p

1–
GC p2

GC

p 1–
GC k 1– k 1– <k 2

1– > 1–+( )⁄≡ p2
GC <k 2

1– > 1–≡ k 1–

<k 2
1– > 1–

R0 ≡ <t2> <t>2–

<t>2
--------------------------

S[ ] 0→
lim 1–⎝ ⎠

⎛ ⎞ 2 <k 2
2– >w <k 2

1– >w
2–( )

<k 2
1– >w

2
----------------------------------------------=

KM 20≅ p2 0.49≅ <tES
2 > <tES>

2–( )
<tES>

2 3.2≅

Figure 1. (circle) Randomness parameter for turnover time
fluctuation of β-galactosidase enzyme. (square) Mandel's Q
parameter estimated from intensity fluctuation of light emission
from product molecules of β-galactosidase catalysis (Dashed line)
Result of Eq. (11) (Solid line) Result of Eq. (6), both best fitted to
the experimental data.
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<tES> = p2<t>min = 0.67 msec. In addition, the value of the

bimolecular rate coefficient k1 associated with the enzyme-

substrate encounter reaction can be obtained from the MM

constant by M−1 sec−1.

As shown in the next section, the single enzyme reaction

is not really a renewal process, as the turnover time distri-

bution of an enzyme would change in time in line with

thermal fluctuations of the enzyme’s conformation with a

wide range of time scale. For this reason, the enzymatic

turnover times are correlated, and the renewal kinetics

would not be enough for a quantitative description of the

turnover events counting statistics or the probability Pm(T)

that we observe m enzymatic turnover reactions in observa-

tion time T.24-26 However, when the observation time is much

longer than the conformational relaxation time of the ES

complex, the distribution of single enzymatic turnover times

can be described by Eq. (1).17 For a particular realization of a

single enzymatic turnover, the enzymatic turnover time t is

given by t = t1 + n(t−1 + t1) + t2 where t1, t−1 and t2 respec-

tively denote the reaction times associated with E + S → ES,

E + S ← ES, and ES → E + P, and n denotes the number of

dissociation-association cycles realized during the single

enzymatic turnover. As long as the probability density

functions of reaction times, t−1 and t2, of the ES complex

are independent of the number, n, of dissociation-associ-

ation cycles in the single enzymatic turnover, the joint

probability ψn(t)dt that the single enzymatic turnover time

lies between t and t + dt and n cycles of dissociation-

association reactions occur during the single enzymatic

turnover can be represented as 

 in Laplace domain for any value of n. Note that

 is nothing but the probability

that the ES complex suffers n cycles of dissociation-

association reactions during a single enzymatic turnover.

Note, in addition, that  yields the single enzymatic

turnover time distribution of which Laplace transform is

given in Eq. (1). This result indicates that the only assump-

tion involved in Eq. (1) is that probability density functions

of reaction times, t−1 and t2, of the ES complex are inde-

pendent of the number, n, of dissociation-association cycles

suffered by the ES complex in a single enzymatic turnover.

The significant assumption in the derivation of Eq. (6) from

Eq. (1) is that the substrate-enzyme association reaction has

a constant steady-state reaction rate, which is widely

accepted and also assumed in ref. 9. Nevertheless, when the

substrate concentration is low enough, the latter assumption

may not hold and the substrate-enzyme association may not

be a Poisson process. 

Reaction Event Counting Statistics of a Dynamically 

Heterogeneous Biological Reaction System

Theory. In this section, we introduce RECS of a general

nonrenewal reaction process, in which the reaction time

distribution is dependent on hidden dynamical state Γ of the
reaction system and the surrounding environment.24 We

begin with introducing two fundamental probability density

functions, ψ 0
Γ(t) and φ

0
Γ(t), that describe the microscopic

dynamics of system state Γ and the Γ-dependent reaction
dynamics of the reaction system, respectively: ψ 0

Γ(t)dt

denotes the probability that a transition from state Γ to other
states occurs between t and t + dt for the first time after the

transition to state Γ at time 0, and φ 0
Γ(t)dt denotes the

probability that a reaction system at state Γ completes a
single reaction event between t and t + dt given that the

event began at time 0. In this work, we are interested in a

general relation of ψ 0
Γ(t) and φ

0
Γ(t) to the number distribution

pn(t) of product molecules for the reaction system at time t. 

To find the relation, we should first obtain the generalized

master equation (GME) for pn(Γ, t), the probability density
that the reaction system is in hidden state Γ at time t and has
had n reaction events in time t given that the first reaction

event starts at time 0. pn(t) is defined by . The

dynamics of hidden state Γ can be modeled by the continuous
time random walk in the presence of arbitrary potential,21,27

which can describe a variety of dynamical phenomena. The

derivation of the GME is a straightforward generalization of

that presented in ref. 21. The result is 

, (13)

where f(t)*g(t) denotes the convolution integral, .

The first term in the right side of Eq. (13) describes the time

evolution of pn(Γ, t) due to the reaction of the system in state
Γ. The expression for reaction rate kernel κΓ is simple in

Laplace domain: 

. (14)

Here,  and  denote the Laplace transforms  of

 and , respectively.

L(Γ) in Eq. (13) is the operator describing the dynamics of
hidden state.24

We can obtain the expression for the moments of pn(t)

from the characteristic function method. From Eq. (14), one

can obtain the following expression for the characteristic

function, Fλ(Γ, t) defined by :

(15)

Here P0(Γ) denotes the initial distribution of Γ sampled at
the initial time of each measurement bin. Expressions for the

moments of pn(t) can be obtained from the well-known

property of the characteristic function, i.e. with <n(n−1)…
(n−l+1)(t)>=  which  are

obtained as 

<n(n−1)…(n−1+1)(t)>

 .(16)

Here L−1 denotes the inverse Laplace transform operator,

and  denotes the propagator defined by 

. 

k1 1/ KM<tES>( ) 7.46
7×10≅=

ψ̂n u( ) φ̂1
0
u( ) φ̂ 1– u( )φ̂1

0
u( )[ ]n=

φ̂2 u( )
dtψn t( )

0

∞

∫ ψ̂n 0( ) 1 p2–( )np2= =

ψ n t( )
n 0=

∞

∑

pn t( ) pn Γ t,( )
Γ

∑=

∂
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0

t

∫

κ̂Γ u( )
uφ̂Γ u( )

1 φ̂Γ u( )– ψ̂Γ u( )–
---------------------------------------=

φ̂Γ u( ) ψ̂Γ u( )
φΓ t( ) φΓ

0 t( ) dτψ Γ

0

t

∞

∫ τ( )= ψ
Γ t( ) ψ

Γ

0 t( ) dτφΓ

0

t

∞

∫ τ( )=
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∞

∑ λ
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F̂λ Γ,u( )=  
n 0=

∞

∑ λ 1–( )n 1

u L Γ( )–
-------------------κ̂Γ u( )

n 1

u L Γ( )–
-------------------P0 Γ( )

∂ l
/∂λl( )Fλ t( )]λ=1 Fλ t( )=  ∫ dΓFλ Γ,t( )

=L
1– l!

u
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l

∏ κ̂
Γj
u( )Ĝ Γj,u|Γj 1–( ) P0 Γ0( )
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When the relaxation dynamics of Γ occurs on a time scale
much shorter than the time scale of the individual reaction

event, we can assume that  where

Peq(Γ) is the equilibrium distribution satisfying 
=0. In the latter case, Eq. (16) reduces to 

<n(n−1)…(n−l+1)(t)>= (17)

where . One can show that the prob-

ability distribution pn corresponding to the latter moment is

, (18)

where  is the equilibrium reaction time distribution

defined by . Equation (18) is the

same as the result of renewal theory.28 In general, the slow

dynamics of hidden state Γ makes pn different from Eq. (18).
Deviation of a stochastic process from renewal statistics can

be estimated by parameter Θ, which is defined by24 

. (19)

One can show that Θ vanishes for renewal process, whose

statistics conforms to Eq. (18). When dynamics of hidden

state Γ occurs in a time scale much greater than the
individual reaction time scale, we can approximate Eq. (16)

as 

<n(n−1)…(n−l+1)(t)>

, (20)

where  is the effective reaction rate coefficient of the

nonrenewal process, defined by . 

Two initial state distributions are most relevant to experi-

ment. At first we will consider the RECS for the equilibrium

initial state distribution, , which is the case

where our experimental system is composed of a number of

catalytic biopolymer. In modern single molecule spectro-

scopy, one can choose the initial measurement time along a

single molecule reaction trajectory. When the initial mea-

surement time is sampled homogeneously along the long

enough single molecule reaction trajectory, the sampled

initial state distribution would be the equilibrium state

distribution given that the single molecule system is an

ergodic system. When , we can obtain the

following expression for the first two moments of pn from

Eq. (20):29

<n(t)>eq = keqt, (21)

<n2(t)>eq − <n(t)>eq
2 = <n(t)> + 2 .

(22)

Here keq denote the equilibrium reaction rate defined by

.  is the rate-rate autocorre-

lation function defined by =

. It is remarkable that the nonrenewal

indicator Θ, defined in Eq. (19), is simply related to the rate-

rate autocorrelation function: 

. (23)

Note that Θ(t) given in Eq. (23) vanishes at long times at

which the relaxation of the reaction rate fluctuation occurs

significantly. This tells us that nonrenewal stochastic reac-

tion process obeys renewal statistics at long times. On the

other hand, Mandel’s Q parameter, which estimates the

deviation from Poisson stochastic process, is given by30 

(24)

.

It does not vanish at long times; instead, it is given by 

. (25)

where ξ denotes the characteristic time scale of the reaction

rate fluctuation, defined by 

. (26) 

Equation (25) indicates that deviation  from Poisson

statistics increases with both the magnitude  of the

reaction rate fluctuation and the relaxation time scale ξ of

the reaction rate fluctuation. 

Up to now, we discuss RECS for reaction system of which

initial distribution is the equilibrium distribution  that

satisfies , and the results presented above are

applicable to the reaction system composed of a number of

biopolymers at equilibrium state. In the analysis of single

molecule reaction trajectories, the equilibrium initial state

distribution can be prepared by sampling the initial measure-

ment time homogeneously in time along each single mole-

cule reaction trajectory. For a system with a nonequilibrium

initial distribution, the moments of reaction event number

distribution are given by Eq. (20). A particularly important

nonequilibrium initial state distribution in the analysis of

single molecule reaction trajectories is the distribution

 of the single molecule system state sampled only at

the moment when single molecule reaction begins, which is

given by 

. (27)

For the latter initial condition, Eq. (20) yields, 

<n(n−1)…(n−l+1)(t)>0
* = .

(28)

Equation (28) with l being equal to 1 tells us that the

information about the rate-rate autocorrelation function

contained <n(n−1)(t)> can be obtained directly from the
mean reaction number  of RECS for the case with
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nonequilibrium initial state distribution : 

 (29)

Note that  is nonlinear in time in contrast to the

mean reaction number <n(t)>eq given in Eq. (21); the time

derivative of  is a monotonically decreasing func-

tion of the size t of measurement time, 

,  (30)

which varies from the initial value, , to the

final value, keq the equilibrium reaction rate. The time

derivative of  is exactly the same as two reaction

event density obtained by Yang and Cao.31 

Comparison to Stochastic Simulation Results 

Gillespie’s stochastic simulation method provides the

numerical solution of the master equation, which provides

numerical results for the RECS of a reaction with a constant

reaction rate.7 In our recent work we generalize Gillespie’s

stochastic simulation method to investigate RECS of bio-

polymer reaction with reaction rate fluctuation.29 Our simu-

lation method is particularly useful when the propagator

 of the system state is available, and it gives the

numerical results for the RECS of a reaction system with a

state-dependent reaction rate much more efficiently com-

pared to the stochastic simulation method involving an

explicit simulation of the system dynamics in the state space.

In Figure 2, comparison is made between the analytic

results, Eqs. (21) and (29), and the stochastic simulation

results for the time-dependence of the mean number of the

product molecules generated by an elementary reaction with

the following rate fluctuation, , where  is

Gaussian process with the time correlation function being

given by . k0 and κ are time-

independent constants. b2 denotes the variance <Γ2>eq and λ

denotes the relaxation rate of dynamical variable Γ(t). As
shown in Figure 2, the predictions of the analytic results are

in perfect agreement with the simulation results for the

reaction system with nonequilibrium state distribution P0
*(Γ)

as well as for the case with the equilibrium initial state

distribution. Figure 2 clearly shows that the mean product

number  of the reaction system with equilibrium

initial state distribution increases linearly in measurement

time t, as given in Eq. (21); in contrast, the mean product

number  has nonlinear time dependence, as given in

Eq. (29), for the reaction system with nonequilibrium initial

state distribution P0
*(Γ) defined in Eq. (27). In calculation of

the results shown in Figure 2, b and  are chosen to be

units of length and time. The values of other parameters used

are chosen to be κb2/k0 = 1 and λ/k0=2 × 10−3. 

Our stochastic simulation results are in good agreement

with predictions of the analytic results also for a higher order

moment of the number distribution of the product molecules,

which will appear somewhere else shortly. 

Summary

We introduce novel chemical kinetics recently proposed

for description of the fluctuations in reaction times and in the

number of product molecules in a small and heterogeneous

biological system. We review renewal chemical kinetics that

could provide successful quantitative interpretation of

randomness parameter data in fluctuating enzymatic turn-

over times of β-galactosidase and discuss the information

that can be extracted from the analysis of single enzyme

turnover time fluctuations. We discuss generalization of

renewal theory for description of chemical fluctuation or the

number distribution of the product molecules of a multistep

biopolymer reactions occurring in a dynamically hetero-

geneous environment. We also present new stochastic simu-

lation results for the chemical fluctuation of a dynamically

heterogeneous reaction system and investigate the effects of

the initial state distribution on the probabilistic outcome of

the dynamically heterogeneous reaction system. The simu-

lation results are found to be in good agreement with pre-

dictions of the analytic results obtained from the generalized

master equation. The time-dependence of the chemical

fluctuation of the biopolymer system with a nonequilibrium

initial condition turns out qualitatively different from that

predicted by renewal statistics. 
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