• Title/Summary/Keyword: 3-level power converter

Search Result 227, Processing Time 0.025 seconds

Design of Multilevel Variable Output Voltage AC-DC Converter for Power Amplifier of Underwater Acoustic Sensor (수중 음향센서용 전력증폭기를 위한 멀티레벨 가변전압출력 AC-DC 전원회로 설계)

  • Lee, Chang-Yeol;Kim, In-Dong;Nho, Eui-Cheol;Moon, Won-Kyu;Kim, Won-Ho
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.18 no.1
    • /
    • pp.72-83
    • /
    • 2013
  • The paper proposes a new multilevel variable output voltage AC/DC Converter for power supply of power amplifiers used in underwater acoustic sensors. The proposed multilevel variable output voltage AC/DC Converter is composed of two parts. One as the input section is the high efficiency phase-shifted PWM full bridge DC-DC converter to get multiport power sources. The other as the output section is composed of two flying-capacitor 3-level DC-DC converters and a diode bridge circuit to get fast-response and multilevel variable output voltage for an envelope amplifier. Also the paper suggests the detailed circuit topology and design guideline of multilevel variable output voltage AC/DC converter. It also proposes the power balanced control method between 3-level converters and the voltage balanced algorithm for flying capacitors. Its characteristics should be verified by the detailed simulation results. It is anticipated that the proposed converter will be used very well for power amplifiers used in underwater acoustic sensors.

A Main Power Supply for Railway Vehicles using 3-level converters (3레벨 컨버터를 이용한 철도차량용 주 전력변환장치)

  • Rho Sung-Chan;Kim Yoon-Ho
    • Proceedings of the KSR Conference
    • /
    • 2003.10c
    • /
    • pp.646-652
    • /
    • 2003
  • AS a main Power Supply of the Railroad Vehicles, a three-Level ZVZCS DC/DC Converter is proposed in this paper. The proposed three-Level DC/DC Converter achieves zero voltage and zero current switching for the main switches. Its attribute is that the voltage across the switches is half the value of the input voltage. Also. using a diode and secondary side of the transformer, and simple auxiliary circuits it achieves zero current switching of the auxiliary switches. The principle operation and simulation results are included.

  • PDF

High Switching Frequency and High Power Density Three-Level LLC Resonant Converter using Integrated Magnetics (Integrated Magnetics를 적용한 고속 스위칭 및 고전력밀도 3 레벨 LLC 공진형 컨버터)

  • Nam, Kyung-Hoon;Park, Chul-Wan;Bae, Ji-Hun;Ji, Sang-Keun;Ryu, Dong-Kyun;Choi, Heung-Gyoon;Han, Sang-Kyoo
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.22 no.6
    • /
    • pp.551-554
    • /
    • 2017
  • This paper proposes a three-level LLC resonant converter using integrated magnetics (IM). Given that the switch voltage stress of the proposed converter is guaranteed to be half of the input voltage, the switching losses can be greatly reduced, thereby benefitting the high-frequency operation. To reduce the volume of reactive components such as transformers, high-frequency driving and planar core are applied. However, two resonant inductors and one transformer are required because of the three-level structure and the limited leakage inductance of the planar transformer for the resonant operation. Therefore, the effect of volume reduction is not very large. In order to solve these drawbacks, this paper proposes a new IM that integrates all magnetic elements used in the proposed three-level resonant converter by using the magnetizing inductor as a resonant inductor. The experimental results are presented by conducting a theoretical analysis of a prototype with 350 W to 800 kHz.

Direct Instantaneous Torque Control of SRM using 4-level Converter (4-레벨 콘버터를 이용한 SRM의 순시 토오크 제어 기법)

  • Lee, Dong-Hee;Lee, Sang-Hun;Ahn, Jin-Woo
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.12 no.3
    • /
    • pp.205-212
    • /
    • 2007
  • This paper presents a direct instantaneous torque control (DITC) of Switched Reluctance Motor (SRM) with a novel 4-level converter to develop a uniform torque and to improve a dynamic performance. The DITC method can reduce a high torque ripple of SRM. Drive efficiency and dynamic performance with conventional drive are low due to a slow excitation current build-up. Since the 4-level converter can obtain an addition boosted voltage to have a fast excitation and demagnetization, it can Improve dynamic performance and efficiency easily. To apply the DITC technique to a 4-level converter, a novel control scheme is presented according to the operating modes. Additionally, selection of capacitances of boosted capacitor and efficiency improvement of 4-level converter are analyzed. At last, the validity of proposed method is verified by some computer simulations md comparative experiments.

Model Predictive Control of Bidirectional AC-DC Converter for Energy Storage System

  • Akter, Md. Parvez;Mekhilef, Saad;Tan, Nadia Mei Lin;Akagi, Hirofumi
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.1
    • /
    • pp.165-175
    • /
    • 2015
  • Energy storage system has been widely applied in power distribution sectors as well as in renewable energy sources to ensure uninterruptible power supply. This paper presents a model predictive algorithm to control a bidirectional AC-DC converter, which is used in an energy storage system for power transferring between the three-phase AC voltage supply and energy storage devices. This model predictive control (MPC) algorithm utilizes the discrete behavior of the converter and predicts the future variables of the system by defining cost functions for all possible switching states. Subsequently, the switching state that corresponds to the minimum cost function is selected for the next sampling period for firing the switches of the AC-DC converter. The proposed model predictive control scheme of the AC-DC converter allows bidirectional power flow with instantaneous mode change capability and fast dynamic response. The performance of the MPC controlled bidirectional AC-DC converter is simulated with MATLAB/Simulink(R) and further verified with 3.0kW experimental prototypes. Both the simulation and experimental results show that, the AC-DC converter is operated with unity power factor, acceptable THD (3.3% during rectifier mode and 3.5% during inverter mode) level of AC current and very low DC voltage ripple. Moreover, an efficiency comparison is performed between the proposed MPC and conventional VOC-based PWM controller of the bidirectional AC-DC converter which ensures the effectiveness of MPC controller.

The Development of Double Conversion Uninterruptible Power Supply Using 3-Level Converter/TNPC Inverter (3-레벨 부스트 컨버터/TNPC 인버터를 적용한 이중변환 무정전전원장치 개발)

  • Byeon, Yong Seop;Lim, Seung Beom;Choi, Kyu Hyuk;Hong, Soon Chan;Lee, Jun Young
    • Proceedings of the KIPE Conference
    • /
    • 2014.07a
    • /
    • pp.83-84
    • /
    • 2014
  • This paper proposes the development of double conversion Uninterruptible Power Supply using 3-Level Converter/TNPC Inverter. The Rectifier of proposed system is operating not only 3-Level boost PFC but also battery discharger. The Inverter is converting DC voltage to AC voltage. And in terms of the efficiency, 3-Level TNPC inverter is improved compared to the origin 2-Level type. To verify the validity of proposed system, experiments were carried out.

  • PDF

An Injection-Locked Based Voltage Boost-up Rectifier for Wireless RF Power Harvesting Applications

  • Lee, Ji-Hoon;Jung, Won-Jae;Park, Jun-Seok
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.6
    • /
    • pp.2441-2446
    • /
    • 2018
  • This paper presents a radio frequency-to-direct current (RF-to-DC) converter for special RF power harvesting application at 915 MHz. The major featured components of the proposed RF-to-DC converter is the combination of a cross-coupled rectifier and an active diode: first, the cross-coupled rectifier boosts the input voltage to desired level, and an active diode blocks the reverse current, respectively. A prototype was implemented using $0.18{\mu}m$ CMOS technology, and the performance was proven from the fact that the targeted RF harvesting system's full-operation with higher power efficiency; even if the system's input power gets lower (e.g., from nominal 0 to min. -12 dBm), the proposed RF-to-DC converter constantly provides 1.47 V, which is exactly the voltage level to drive follow up system components like DC-to-DC converter and so on. And, maximum power conversion efficiency is 82 % calculated from the 0 dBm input power, 2.3 mA load current.

Steady State Analysis & Small Signal Modeling of Variable Duty Cycle Controlled Three Level LLC Converter (듀티 제어가 적용된 3레벨 LLC 컨버터의 정상상태 및 소신호 모델링)

  • Humaira, Hussain;Kim, Hag-Wone;Cho, Kwan-Yuhl
    • Proceedings of the KIPE Conference
    • /
    • 2019.07a
    • /
    • pp.317-319
    • /
    • 2019
  • In this paper, a three level duty cycle controlled half bridge LLC converter for EV charger application is presented. The topology and operating regions of the converter are discussed. The equations of the converter are derived in time domain. A small signal model of the converter is developed by perturbation and linearization of the steady state model about their operating point using Extended Describing function.

  • PDF

A Novel Three-Level ZVS PWM Inverter Topology for High-Voltage DC/DC Conversion Systems with Balanced Voltage Sharing and Wider Load Range (차단전압 균형과 넓은 부하범위를 갖는 새로운 3-레벨 ZVS PWM DC-DC 컨버터)

  • 송인호;유상봉;서범석;현동석
    • Proceedings of the KIPE Conference
    • /
    • 1996.06a
    • /
    • pp.71-75
    • /
    • 1996
  • As the Three-level ZVS PWM DC-DC converter operates likewise full-bridge ZVS PWM DC-DC converter and the blocking voltage of each switching device is a half of the DC-link voltage, it is suitable for the high imput voltage applications. However, it has some problems as follows; The blocking voltage of each devices is unbalanced and it causes the power losses of the inner switching devices to be increased. Also, it has narrow load range so that the switching losses and the efficiency are reduced as it goes to the light load. This paper presents an nove Three-level ZVS PWM DC-DC converter, which can reduce the overvoltage of the outer switches, eliminate the unbalance of the voltage sharing between the switches at turn-off due to the stray inductances, and operate from no load to full load. The characteristics and the performances of the proposed Three-level ZVS PWM DC-DC converter are verified by simulation and experimental results

  • PDF

Carrier Based LFCPWM for Leakage Current Reduction and NP Current Control in 3-Phase 3-Level Converter (3상 3-레벨 컨버터의 누설전류 저감과 NP 전류 제어를 위한 캐리어 기반 LFCPWM)

  • Lee, Eun-Chul;Choi, Nam-Sup
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.27 no.5
    • /
    • pp.446-454
    • /
    • 2022
  • This study proposes a carrier-based pulse width modulation (PWM) method for leakage current reduction and neutral point (NP) current control in a three-phase three-level converter, which is a carrier-based PWM version of the previously proposed low-frequency common mode voltage PWM. Three groups of space vectors with the same common mode voltage are used. When the averaged NP current needs to be positive or negative, the specific groups are employed to produce low-frequency common mode voltages. The validity of the proposed PWM method is verified through experiments.