• Title/Summary/Keyword: 3-dimensional stress

Search Result 1,325, Processing Time 0.028 seconds

Evaluation of Strength and Residual Stress in $Si_3N_4/SUS304$ Joint ($Si_3N_4/SUS304$ 접합재의 잔류응력 및 강도평가)

  • 박영철;오세욱;조용배
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.1
    • /
    • pp.101-112
    • /
    • 1994
  • The measurement of residual stress distribution of $Si_3N_4/SUS304$ joint was performed on 23 specimens with the same joint condition using PSPC type X-ray stress measurement system and the two-dimensional elastoplastic analysis using finite element method was also attempted. As results, residual stress distribution near the interface on the ceramic side of the joint was revealed quantitatively. Residual stress on the ceramic side of the joint was turned out to be tensional near the interface, maximum along the edge, varying in accordance with the condition of the joint and variance to be most conspicuous for the residual stress normal to the interface characterized by the stress singularities. In the vicinity of the interface, the high stress concentration occurs and residual stress distributes three-dimensionally. Therefore, the measured stress distribution differed remarkably from the result of the two-dimensional finite-element analysis. Especially at the center of the specimen near the interface, the residual stress, $\sigma_{x}$ obtained from the finite element analysis was compressive, whereas measurement using X-ray yielded tensile $\sigma_{x}$. Here we discuss two dimensional superposition model the discrepancy between the results from the two dimensional finite element analysis and X-ray measurement.

Analysis of the J-integral for Two-dimensional and Three-dimensional Crack Configurations in Welds of Steel Structure (강구조물 응접접합부의 2차원 및 3차원 균열에 대한 J-적분 해석)

  • 이진형;장경호
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2004.10a
    • /
    • pp.270-277
    • /
    • 2004
  • In this paper, path-independent values of the J-integral in the fininte element context for arbitrary two-dimensional and three-dimensional crack configurations in welds are presented. For the fracture mechanics analysis of cracks in welds, residual stress analysis and fracture analysis must be performed simultaneously. In the analysis of cracked bodies containing residual stress, the usual domain integral formulation results in path-dependent values of the J-integral. This paper discusses modifications of the conventional J-integral that yield path independence in the presence of residual stress generated by welding. The residual stress problem is treated as an initial strain problem and the J-integral modified for this class of problem is used. And a finite element program which can evaluate the J-integral for cracks in two-dimensional and three-dimensional residual stress bearing bodies is developed using the modified J-integral definition. The situation when residual stress only is present is examed as is the case when mechanical stresses are applied in conjunction with a residual stress field.

  • PDF

Analysis of the 3-D Stress Wave in a Plate under Impact Load by Finite Element Method

  • Jin, Sung-Hoon;Hwang, Gab-Woon;Cho, Kyu-Zong
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.2 no.2
    • /
    • pp.5-10
    • /
    • 2001
  • This paper attempt to explore the shape of stress wave propagation of 3-dimensional stress field which in made in the process of the time increment. A finite element program about 3-dimensional stress wave propagation is developed for investigating the changing shape of the stress by the impact load. The finite element program, which is the solution for the 3-dimensional stress wave analysis, based on Galerkin and Newmark-${\beta}$ method at time increment step. The tensile stress and compressive stress become larger with the order of the middle , the upper and the opposite layers when the impact load is applied. In a while the shear stress become larger according to the order of the upper, the middle and the opposite layers when impact load applied.

  • PDF

Analysis of Principal Stresses of O-Ring under Uniform Deformation and Internal Pressure by Stress Freezing Method (응력동결법에 의한 고압기밀용 오링의 주응력 해석)

  • Nam, Jeong-Hwan;Hawong, Jai-Sug;Kim, Young-Tak;Park, Sung-Han;Shin, Dong-Chul
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.150-154
    • /
    • 2008
  • In this research, stress components and principal stresses of O-ring under internal pressure and under uniform squeeze rate were obtained from the stress freezing method of photoelastic experiment and photoelastic experimental Hybrid method for 3-dimensional problems. The obtaining processes of those were introduced. It was certified that the processes of those are effective for the 3-dimensional stress analysis of structures. Stress freezing method, the obtaining processes of those and photoelastic experimental hybrid method were effectively applied to the stress analysis of O-ring made from rubber that under uniform deformation and internal pressure. Stress components and principal stress of Oring under uniform squeeze rate and under internal pressure were analyzed.

  • PDF

유한요소법에 의한 3차원 충격파 해석

  • 진성훈
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.773-777
    • /
    • 1995
  • This thesis attempt to explore the shape of stress wave propagation of 3-dimensional stress field which is made in the process of time increment. A finite element code about 3-dimensional stress wave propagation is developed for investigating the changing shape of the fracture by the impact load. The Finite Element Code, which is the solution for the 3-dimensional stress wave analysis, based on Galerkins and Newmark- .betha. method at time increment step. The tensile stress and compressive stress become larger with the order of the middle, the upper and the opposite layers when the impact load is applied. In a while the shear stress become larger according to the order of the upper, the middle and the opposite layers when impact load applied.

  • PDF

A Study tor 2-Dimensional Analysis Technique for 3-Dimensional Ground Behaviour Due to Tunneling (터널 굴진시의 3차원 지반거동의 2차원적 해석법 고찰)

  • 김교원;이현범
    • The Journal of Engineering Geology
    • /
    • v.6 no.3
    • /
    • pp.111-118
    • /
    • 1996
  • In general, a three dimensional ground behaviour during tunneling is simulated by using two dimensional analysis programs in consideration of a certain ratio of stress or strain distribution to take into account the effect of construction stage by a tunnel face advance. A series of trree dimensional analyses was conducted to deduce a normalized displacement (surface or crown settlement) curve in longitudinal direction, of which curve is reflecting an effect of a tunnel advance under a various condition. And, by using try and error technique, two dimensional analyses were carried out to determine an optimum stress distribution ratio for a settiement curve coincided with the curve obtained by three dimensional analyses. Finally, monitored results from a subway tunnel were compared with two dimensional analysis results for varification of the deduced stress distribution ratio as well as the two dimensional analysis program employed in this study.

  • PDF

Stress Effects on Activity of Primary Cracks Initiating at Stress Concentrator (응력 집중원에서 발생하는 초기 균열의 거동에 미치는 응력장의 영향)

  • Song, Sam-Hong;Kim, Jin-Bong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.3 s.96
    • /
    • pp.145-153
    • /
    • 1999
  • This study has been performed to investigate the stress distribution around defects that behave as stress concentrators and fracture mechanical analysis for cracks initiatiating at stress concentrators. The stress distribution was analyzed using Finite Element Method and non dimensional stress intensity factor was determined by the mean stress method. In addition, stress interaction effects around defects and cracks were compared.

  • PDF

Development of 3-Dimensional Stress Measurement System by Bore hole Bottom Deformation Method (공저변형법에 의한 3차원응력측정 시스템의 개발)

  • Lee, Ki-Ha;Ishijima, Yoji;Fujii, Yoshiaki
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.03a
    • /
    • pp.34-41
    • /
    • 2006
  • A 3-dimensional stress measurement system based on the bore hole bottom deformation method, which is one of the stress relief methods, was developed. A pilot bore hole is drilled from the bottom of a bore hole and the stress meter is inserted into the pilot bore hole in the method. The bore hole is advanced as an over coring and the deformations in seven directions are measured by cantilever type-sensors. Using the cantilever type-sensors saves time for hardening of glue. No cable connection between the stress meter and a data logger is necessary since a compact data logger is installed in the stress meter. The accuracy of the stress meter was confirmed by a biaxial test for a Shikotsu welded tuff block although in-situ tests have not been carried out yet.

  • PDF

The 3-Dimensional Tunnel Analysis Considering Stress Concentration . Load Distribution Ratio (응력집중을 고려한 터널의 3차원 거동에 관한 연구 -하중분담률 중심으로)

  • 이인모;최항석
    • Geotechnical Engineering
    • /
    • v.12 no.1
    • /
    • pp.87-110
    • /
    • 1996
  • To simulate the three4imensional effect occurring near the tunnel face in a two -dimensional model, empirical load -dirtribution ratio concept is frequently used in tunnel design. In this paper, three -dimensional analysis is performed and its results are compared with those of two dimensional analysis'to investigate the applicability of the loadiistribution ratio concept. Especially, stress concentration near the tunnel face is investigated in depth. A parametric study is performed to investigate the effect of each factor on the load distribution ratio. The factors considered here include unsupported span length, initial stress, rock quality, tunnel size and the depth of tunnel location Moreover, the load -distribution ratios for the typical tunnel sections in Seoul Subway to be used in the tunnel design are suggested.

  • PDF

A Study on the Shape Design and Stress Analysis of Wheel Plate for Rolling Stock (2) (철도차량용 휠 플레이트의 응력해석 및 형상설계에 관한 연구(2))

  • 성기득;양원호;조명래;정기현
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.3
    • /
    • pp.221-229
    • /
    • 2001
  • The mechanical stress due to the wheel-rail contact and thermal stress due to the drag braking increase the incidence of wheel failure. So, firstly, stress analyses(mechanical, thermal and combined stress) of wheel plate are performed using 3-dimensional finite element method(FEM). Secondly, the optimum design of wheel plate ;s investigated in order to reduce weight of the wheel based on results of stress analysis. The optimum design is peformed using 2-dimensional axisymmetric F.E. model and its results are verified by 3-dimensional F. E. model.

  • PDF