• Title/Summary/Keyword: 3-dimensional scanning

Search Result 516, Processing Time 0.024 seconds

Optical Scanning Holography - A Review of Recent Progress

  • Poon, Ting-Chung
    • Journal of the Optical Society of Korea
    • /
    • v.13 no.4
    • /
    • pp.406-415
    • /
    • 2009
  • Optical scanning holography (OSH) is a distinct digital holographic technique in that real-time holographic recording a three-dimensional (3-D) object can be acquired by using two-dimensional active optical heterodyne scanning. Applications of the technique so far have included optical scanning cryptography, optical scanning microscopy, 3-D pattern recognition, 3-D holographic TV, and 3-D optical remote sensing. This paper reviews some of the recent progress in OSH. Some possible further works are also discussed.

Comparison of intraoral scanning and conventional impression techniques using 3-dimensional superimposition

  • Rhee, Ye-Kyu;Huh, Yoon-Hyuk;Cho, Lee-Ra;Park, Chan-Jin
    • The Journal of Advanced Prosthodontics
    • /
    • v.7 no.6
    • /
    • pp.460-467
    • /
    • 2015
  • PURPOSE. The aim of this study is to evaluate the appropriate impression technique by analyzing the superimposition of 3D digital model for evaluating accuracy of conventional impression technique and digital impression. MATERIALS AND METHODS. Twenty-four patients who had no periodontitis or temporomandibular joint disease were selected for analysis. As a reference model, digital impressions with a digital impression system were performed. As a test models, for conventional impression dual-arch and full-arch, impression techniques utilizing addition type polyvinylsiloxane for fabrication of cast were applied. 3D laser scanner is used for scanning the cast. Each 3 pairs for 25 STL datasets were imported into the inspection software. The three-dimensional differences were illustrated in a color-coded map. For three-dimensional quantitative analysis, 4 specified contact locations(buccal and lingual cusps of second premolar and molar) were established. For two-dimensional quantitative analysis, the sectioning from buccal cusp to lingual cusp of second premolar and molar were acquired depending on the tooth axis. RESULTS. In color-coded map, the biggest difference between intraoral scanning and dual-arch impression was seen (P<.05). In three-dimensional analysis, the biggest difference was seen between intraoral scanning and dual-arch impression and the smallest difference was seen between dual-arch and full-arch impression. CONCLUSION. The two- and three-dimensional deviations between intraoral scanner and dual-arch impression was bigger than full-arch and dual-arch impression (P<.05). The second premolar showed significantly bigger three-dimensional deviations than the second molar in the three-dimensional deviations (P>.05).

A Study on the 3D Scanning of Fashionable Textile Materials - Ripple-finished Cotton Fabric and Shrink-proof Finished/Felted Wool Fabric -

  • Kim, Jong-Jun
    • Journal of Fashion Business
    • /
    • v.15 no.6
    • /
    • pp.101-112
    • /
    • 2011
  • Three-dimensional(3D) virtual clothing simulation system may require the use of physical, mechanical, and configurational data in order to mimic the actual clothing with high degree of realism. Therefore the 3-dimensional scanning system based on optical methods was adopted to extract the 3-dimensional data of the fabric surface. In this study, the appearances of the 3-dimensionally transformed textile fabrics via several finishing procedures were investigated using a 3D scanning system. The wool gauze fabrics treated with the shrink-proof finishing and the felting process showed height changes up to 4.5mm. The 3-dimensional configuration may be objectively described by the use of mesh generation from the scanned output. The generated mesh information may further be utilized in the 3D virtual clothing simulation system for accurate description of the fashionable textile materials used in the simulation system.

The Study on Recording Method for Buried Cultural Property Using Photo Scanning Technique (사진스캐닝 기술에 의한 매장문화재 기록방법에 대한 연구)

  • Koo, Ja-bong
    • Journal of Digital Contents Society
    • /
    • v.16 no.5
    • /
    • pp.835-847
    • /
    • 2015
  • Photo scanning can create point cloud and polygon models like 3D scanners bringing an object into the 3 dimensional world by combining several sheets of photographic information. The created data give us information about planes and sectional forms required for a 2 dimensional survey as well as 3 dimensional figures of buried cultural property. It requires a lot of time to record buried cultural property in the field, however, the photo scanning technique does not need additional equipment and manpower so the work may begin immediately while the property is protected. Moreover, it reduces financial burdens as it creates 3 dimensional data using images acquired by photography but provides the optimal condition to check 3 dimensional information quickly and easily.

Three-Dimensional Surface Imaging is an Effective Tool for Measuring Breast Volume: A Validation Study

  • Lee, Woo Yeon;Kim, Min Jung;Lew, Dae Hyun;Song, Seung Yong;Lee, Dong Won
    • Archives of Plastic Surgery
    • /
    • v.43 no.5
    • /
    • pp.430-437
    • /
    • 2016
  • Background Accurate breast volume assessment is a prerequisite to preoperative planning, as well as intraoperative decision making in breast reconstruction surgery. The use of three-dimensional surface imaging (3D scanning) to assess breast volume has many advantages. However, before employing 3D scanning in the field, the tool's validity should be demonstrated. The purpose of this study was to confirm the validity of 3D-scanning technology for evaluating breast volume. Methods We reviewed the charts of 25 patients who underwent breast reconstruction surgery immediately after total mastectomy. Breast volumes using the Axis Three 3D scanner, water-displacement technique, and magnetic resonance imaging (MRI) were obtained bilaterally in the preoperative period. During the operation, the tissue removed during total mastectomy was weighed and the specimen volume was calculated from the weight. Then, we compared the volume obtained from 3D scanning with those obtained using the water-displacement technique, MRI, and the calculated volume of the tissue removed. Results The intraclass correlation coefficient (ICC) of breast volumes obtained from 3D scanning, as compared to the volumes obtained using the water-displacement technique and specimen weight, demonstrated excellent reliability. The ICC of breast volumes obtained using 3D scanning, as compared to those obtained by MRI, demonstrated substantial reliability. Passing-Bablok regression showed agreement between 3D scanning and the water-displacement technique, and showed a linear association of 3D scanning with MRI and specimen volume, respectively. Conclusions When compared with the classical water-displacement technique and MRI-based volumetry, 3D scanning showed significant reliability and a linear association with the other two methods.

3-Dimensional Profile Measurement of Free-Formed Surfaces by Slit Beam Scanning Topography (슬릿광 주사방법에 의한 자유곡면의 삼차원형상 측정)

  • 박현구;김승우;박준호
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.5
    • /
    • pp.1202-1207
    • /
    • 1993
  • An optical method of slit beam scanning topography is presented for the 3-dimensional profile measurement of free-formed surfaces. A slit beam of laser is projected in a scanning mode and its illuminated trajectory on the object is captured by using a CCD camera. The 3-dimensional coordinates of the trajectory is then computed by using the given geometry between the slit beam and the camera, so that the whole surface profile of the object can be obtained in a successive manner. Detailed optical principles are described with special emphasis to lateral are discussed to demonstrate the measuring performances of the slit beam scanning topography proposed in this study.

Application of Three-dimensional Scanning, Haptic Modeling, and Printing Technologies for Restoring Damaged Artifacts

  • Jo, Young Hoon;Hong, Seonghyuk
    • Journal of Conservation Science
    • /
    • v.35 no.1
    • /
    • pp.71-80
    • /
    • 2019
  • This study examined the applicability of digital technologies based on three-dimensional(3D) scanning, modeling, and printing to the restoration of damaged artifacts. First, 3D close-range scanning was utilized to make a high-resolution polygon mesh model of a roof-end tile with a missing part, and a 3D virtual restoration of the missing part was conducted using a haptic interface. Furthermore, the virtual restoration model was printed out with a 3D printer using the material extrusion method and a PLA filament. Then, the additive structure of the printed output with a scanning electron microscope was observed and its shape accuracy was analyzed through 3D deviation analysis. It was discovered that the 3D printing output of the missing part has high dimensional accuracy and layer thickness, thus fitting extremely well with the fracture surface of the original roof-end tile. The convergence of digital virtual restoration based on 3D scanning and 3D printing technology has helped in minimizing contact with the artifact and broadening the choice of restoration materials significantly. In the future, if the efficiency of the virtual restoration modeling process is improved and the material stability of the printed output for the purpose of restoration is sufficiently verified, the usability of 3D digital technologies in cultural heritage restoration will increase.

Three-Dimensional Television using Optical Scanning Holography

  • Poon, Ting-Chung
    • Journal of Information Display
    • /
    • v.3 no.3
    • /
    • pp.12-16
    • /
    • 2002
  • We first review a real-time three-dimensional (3-D) holographic recording technique called optical scanning holography (OSH) and discuss holographic reconstruction using spatial light modulators (SLMs). We then present how the overall system can be used for 3-D holographic television (TV) display with a wide-angle view of a 3-D image, and address some of the issues encountered. Finally, we suggest some techniques to alleviate the issues encountered in such a 3-D holographic TV system.

Creation of Three-dimensional Convergence Model for Artifact Based on Optical Surface Scanning and X-ray CT: Sam-Chongtong Hand Canon in Jinju National Museum (광학식 표면스캐닝 및 X-선 CT를 활용한 유물의 3차원 융합모델 제작: 국립진주박물관 소장 삼총통)

  • Jo, Younghoon;Kim, Dasol;Kim, Haesol;Huh, Ilkwon;Song, Mingyu
    • Conservation Science in Museum
    • /
    • v.22
    • /
    • pp.15-26
    • /
    • 2019
  • This study was focused on the three-dimensional convergence modeling that can multilaterally analyze internal and external shapes of the Sam-Chongtong Hand Canon by optical precision scanning optimized for acquiring the surface shape and X-ray CT scanning used for obtaining the internal shape. First, the scanning results were converted by compatible extension, after which three-dimensional deviation analysis was conducted to verify mutual conformities. Accordingly, most (56.98%) deviations between the two scanning models was found be ±0.1mm. This result did not influence registration and merging based on the ICP algorithm. The merged data exhibited the external surface color, detailed shapes, internal width, and structure of the hand canon. The three-dimensional model based on optical surface scanning and X-ray CT scanning can be used for traditional technique interpretation as well as digital documentation of cultural heritage. In the future, it will contribute to deliver accessible scientific information of exhibits for visitors.

DIMENSIONAL STABILITY AND SURFACE MORPHOLOGY OF VARIOUS DENTURE RESINS (의치상 레진의 중합 방법에 따른 크기의 안정성 및 표면 형태에 관한 연구)

  • Chae Sook-Young;Vang Mong-Sook
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.30 no.3
    • /
    • pp.401-410
    • /
    • 1992
  • The purpose of this study was to investigate the dimensional changes and surface morphology of dentures processed by various polymerization conditions. The measurements were done by taking radiograph and using vernier calipers and each specimen was observed on scanning electron microscope. Results obtained were as follows. 1. The difference of dimensional stability was not recognized between various polymerization conditions(heat-cured resin, pour-type resin, microwave-cured resin, and injection molding resin). 2. There were expansion and shrinkage in the occlusal dimension, shrinkage in the frontal dimension, and expansion in the lateral dimension. 3. Scanning electron microscope pictures of heat-cured resin showed dense and regular surface morphology. 4. Microwave-cured resin surface appeared more regular and smooth than pour-type resin but less dense and more irregular than heat-cured resin. 5. Scanning electron microscope pictures of pour-type resin with the lowest dimensional change showed the most irregular surface morphology.

  • PDF