• Title/Summary/Keyword: 3-dimensional modeling

Search Result 1,353, Processing Time 0.03 seconds

3-Dimensional Printing for Mesh Types of Short Arm Cast by Using Computed Tomography (전산화단층영상을 이용한 그물형 손목 부목의 3D 프린팅)

  • Seoung, Youl-Hun
    • The Journal of the Korea Contents Association
    • /
    • v.15 no.1
    • /
    • pp.308-315
    • /
    • 2015
  • The purpose of this study, using 3D printer, was tried to fabricate the short arm cast of mesh types that can be hygienic and adequate ventilation with a good radiography. We used the multi channel computed tomography (MDCT) with three dimension printer device of the fused deposition modeling (FDM) techniques. The material is used a degradable plastic (poly lactic acid, PLA). Three-dimensional images of the short arm were obtained in the MDCT and then make the three-dimensional volume rendering. Three dimension volume rendering of the short arm is implemented as a tomography obtained in MDCT. Virtual mesh type cast model was output as three-dimensional images is designed based on the three-dimensional images of the short arm. As a results, the cast output by 3D printers were able to obtain excellent radiograph images than the conventional cast, and then it can decreased itching with unsanitary, and can break down easily to the cast. In conclusion, the proposed virtual mesh type cast output by 3D printers could be used as a basis for future three-dimensional printing cast productions and offered help to patients in the real life.

The Case Study on Application of 3 Dimensional Modeling Method with Geophysical Data (물리탐사 자료에 대한 3차원 지반 모델링 적용 사례 연구)

  • Heo, Seung;Park, Joon-Young;Do, Jung-Lok;Yoo, In-Kol
    • Geophysics and Geophysical Exploration
    • /
    • v.11 no.3
    • /
    • pp.221-229
    • /
    • 2008
  • The three dimensional model method is widely applied in resource development for feasibility study, mine design, excavation planning and process management by constructing the database of various data in 3 dimensional space. Most of geophysical surveys for the purpose of engineering and resource development are performed in 2 dimensional line survey due to the restriction of the field situation, technical or economical situation and so on. The acquired geophysical data are used as the input for the 2 dimensional inversion under the 2 dimensional assumption. But the geophysical data are affected by 3 dimensional space. Therefore in order to reduce the error caused by 2 dimensional assumption, the 2 dimensional inversion result must be interpreted considering the additional information such as 3 dimensional topography, geological structure, borehole survey etc. The applicability and usability of 3 dimensional modeling method are studied by reviewing the case study to the geophysical data acquired in field of engineering and resource development.

Optimized Structural and Colorimetrical Modeling of Yarn-Dyed Woven Fabrics Based on the Kubelka-Munk Theory (Kubelka-Munk이론에 기반한 사염직물의 최적화된 구조-색채모델링)

  • Chae, Youngjoo
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.42 no.3
    • /
    • pp.503-515
    • /
    • 2018
  • In this research, the three-dimensional structural and colorimetrical modeling of yarn-dyed woven fabrics was conducted based on the Kubelka-Munk theory (K-M theory) for their accurate color predictions. In the K-M theory for textile color formulation, the absorption and scattering coefficients, denoted K and S, respectively, of a colored fabric are represented using those of the individual colorants or color components used. One-hundred forty woven fabric samples were produced in a wide range of structures and colors using red, yellow, green, and blue yarns. Through the optimization of previous two-dimensional color prediction models by considering the key three-dimensional structural parameters of woven fabrics, three three-dimensional K/S-based color prediction models, that is, linear K/S, linear log K/S, and exponential K/S models, were developed. To evaluate the performance of the three-dimensional color prediction models, the color differences, ${\Delta}L^*$, ${\Delta}C^*$, ${\Delta}h^{\circ}$, and ${\Delta}E_{CMC(2:1)}$, between the predicted and the measured colors of the samples were calculated as error values and then compared with those of previous two-dimensional models. As a result, three-dimensional models have proved to be of substantially higher predictive accuracy than two-dimensional models in all lightness, chroma, and hue predictions with much lower ${\Delta}L^*$, ${\Delta}C^*$, ${\Delta}h^{\circ}$, and the resultant ${\Delta}E_{CMC(2:1)}$ values.

Invention and Hydraulic Model Test of Combined Block System in River Bank Protection (일체형 하천호안블럭의 개발 및 모형실험 적용)

  • Jang, Suk-Hwan;Lee, Chang-Hae;Park, Sang-Woo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2008.05a
    • /
    • pp.449-453
    • /
    • 2008
  • This research focused on analyzing and comparing between the results of hydraulic physical modeling and the results of numerical modeling of Grass Concrete which is newly developed in-situ block system. The physical model was built as a scale of 1:50 by Froude similitude measuring the water levels and the water velocities for before and after vegetation and the effects were analyzed after reviewing the results. In consequence, the water velocities were observed to decrease meanly 19.1%, and the water depth were determined to increase meanly 27.8% in case of the of design flood, $Q=200m^3/sec$. Moreover, the velocities were produced reduction effects of 27.2%, and the water levels were derived from addition effects of the highest 31.3% in case of the probability maximum flood(PMF), $Q=600m^3/sec$. To verifying the hydraulic physical modeling, the numerical modeling was conducted for a close examination of before and after vegetation. HEC-RAS model was for 1 dimensional numerical analysis and RMA-2 was for 2 dimensional numerical analysis. The results of the numerical simulation, under the condition of roughness coefficient calibration, shows similar results of the physical modeling. These satisfactory results show that the accomplished results of hydraulic modeling and the predicted results of numerical modeling corresponded reasonably each others.

  • PDF

3 Dimensional Modeling and Sensitivity Analysis for Vibration Reduction of the Spin-Coater System

  • Park, Jin-Bae;Han, Chang-Soo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.170.2-170
    • /
    • 2001
  • In this paper, the dynamic system modeling and the state sensitivity analysis of the spin-coater system for the reduction of the vibration are proposed. In the respect of modeling, the spin-coater system is composed of components of servomotor, belt, spindle, and a supported base. Each component is defined and combined modeling is derived to 3dimensional equations. Verification of modeling is verified by experimental values of actual system in the frequency domain. By direct differentiation the constraint equations with respect to kinematic design variables, such as eccentricity of spindle, moment of inertia, torsional stiffness and damping of supported base, sensitivity equations are derived to the verified state equations. Sensitivity of design variables could be used for vibration reduction and natural frequency shift in the frequency domain. Finally, dominant design variables ...

  • PDF

Three Dimensional Modeling and Simulation of a Wheel Loader (휠로더의 3 차원 모델링 및 시뮬레이션)

  • Park, Jun-Yong;Yoo, Wan-Suk;Kim, Heui-Won;Hong, Je-Min;Ko, Kyoung-Eun
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.870-874
    • /
    • 2004
  • This paper presents a three dimensional modeling and simulations of operation and running of a wheel loader using the ADAMS program. A wheel loader consists of a bucket, a boom, a crank, a front frame, a rear frame, a bucket cylinder, two boom cylinders, two steering cylinders, nine spherical joints, six universal joints, five translation joints, three inline joints, a revolute and a fixed joint. Judging from the actual degrees of freedom of the wheel loader, proper kinematic joints are selected to exclude redundant constraints in the modeling. Through the running simulation over a bump with the three dimensional modeling, the joint reaction forces are calculated.

  • PDF

A Study on the 3D Injection Mold Design Using Unigraphics API (Unigraphics API를 이용한 사출금형의 3차원 설계에 관한 연구)

  • Kim J.H.;Moon C.S.;Hwang Y.K.;Park J.W.
    • Korean Journal of Computational Design and Engineering
    • /
    • v.10 no.6
    • /
    • pp.381-391
    • /
    • 2005
  • The design methodology of injection molding die has been changed from two-dimensional drafting to three-dimensional solid modeling, which is due to many advantages over the conventional methodology in terms of design modification and data associativity. In addition to the solid modeling capability, it is required for a mold designer to utilize a database management system that facilitates efficient mold design. In the paper presented is the implementation of a software program which automatically generates three-dimensional mold-bases including standard parts and slider parts, conforming to given geometric constraints. It is based on a commercial CAD system (Unigraphics NX) along with related API (application program interface) libraries. The research is expected to reduce design efforts and simplify construction of a complex three-dimensional mold-base model that is comprised of standard parts and slider parts, by use of the three-dimensional database and automatized geometric dimensioning.

3-Dimensional Modeling and Stress Analysis for Lever of Tank (전차레버에 대한 3차원 모델링 및 응력해석)

  • 김성진;이성범;윤중환
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1463-1466
    • /
    • 2003
  • Korean tank has been used from the end of 1980's. Even though Korean tank is regarded as the tank which is made in Korea, a lot of parts still need to be imported from abroad. Therefore, the localization for the parts of Korean Tank is necessary to be set free from the rate of dependence on imports. In this research, one of the most important part of Korean Tank, Lever, was considered to carry out localization. For the first step, two dimensional drawing and three dimensional modeling of the Lever was done. Secondly, the stress analysis was carried out for Lever and it is shown that the predictions of the proposed modeling are in very good agreement with the expected results.

  • PDF

3-Dimensional Modeling and Sensitivity Analysis for Vibration Reduction of the Spin-Coater System (스핀 코터 시스템의 진동 저감을 위한 3차원 모델링과 민감도 해석)

  • 채호철;류인철;한창수
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.2
    • /
    • pp.209-217
    • /
    • 2003
  • In this paper, the dynamic system modeling and the state sensitivity analysis of the spin-coater system are proposed for the reduction of the vibration. In the respect of modeling, the spin-coater system is considered to be composed of servomotor, spindle, supporting base and so on. Each component of model is combined and derived to 3 dimensional equations. The combined model is verified by experimental values of actual system in the frequency domain. By direct differentiation of the constraint equations with respect to kinematic design variables, such as eccentricity of spindle, moment of inertia, rotational stiffness and damping of supported base, sensitivity equations are derived to the verified state equations. Sensitivity of design variables could be used for vibration reduction and natural frequency shift in the frequency domain. Finally, dominant design variables are selected from the sensitivity analysis.

Three-Dimensional Digital-Mold Modeling and Sand-Printing for Replication of Bronze Mirror

  • Jo, Young Hoon;Lee, Jungmin
    • Journal of Conservation Science
    • /
    • v.37 no.1
    • /
    • pp.25-33
    • /
    • 2021
  • To extend the application of digital technology to the replication of artifacts, meticulous details of the process and the diversity of three-dimensional (3D) printing output materials need to be supplemented. Thus, in this study, a bronze mirror with Hwangbichangcheon inscription was digitalized by 3D scanning, converted into a voxel model, and virtual conservation treatment was performed using a haptic device. Furthermore, the digital mold of the bronze mirror completed by Boolean modeling was printed using a 3D sand-printer. Such contactless replication based on digital technology reflects the stability, precision, expressivity, collectivity, durability, and economic feasibility of artifacts. Its application can be further extended to cultural products as well as such areas as education, exhibition, and research. It is expected to be in high demand for metal artifacts that require casting. If empirical studies through experimental research on casting are supplemented in the future, it could extend the application of digital technology-based contactless replication methods.