• 제목/요약/키워드: 3-dimensional magnetostatic analysis

검색결과 8건 처리시간 0.018초

자화 벡터 분포를 고려한 CPM의 3차원 자계 분포 해석 및 설계 (Analysis of 3-Dimensional Magnetic Field Distribution in CPM Considering Magnetization Vector Distribution and Design of CPM)

  • 이철규;권병일;박승찬;우경일
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제51권10호
    • /
    • pp.545-553
    • /
    • 2002
  • This paper is about the analysis of 3-dimensional magnetic field distribution in CPM(Convergence Purity Magnet) considering magnetization vector and the optimum design of CPM. The magnetization vector of CPM is obtained using 2-dimensional magnetization FEA(Finite Element Analysis) coupled with Priesach model. Using this magnetization vector of CPM, we analysed the 2-dimensional and 3-dimensional magnetostatic field of CPM and know that these analysis results are not equal. From experimental result, we know that the 3-dimensional analysis is accurate because the magnetic field distribution in CPM cannot be considered correctly by 2-dimensional analysis because of the shape of CPM. Finally, the optimum designing of CPM which control accurately the electron beam deflection in CRT(Cathode Ray Tube) was possible using 3-dimensional magnetic field analysis result.

3차원 정자계 문제의 형상 최적설계를 위한 설계 민감도 해석 (Design Sensitivity Analysis for the Optimal Shape Design of Three-Dimensional Magnetostatic Problems)

  • 고창섭;정현교;한송엽
    • 대한전기학회논문지
    • /
    • 제41권8호
    • /
    • pp.850-857
    • /
    • 1992
  • Design sensitivity analysis is proposed for the optimal shape design of three-dimensional magnetostatic problems. The direct differentiation method is introduced for design sensitivity analysis and the boundary element method with reduced magnetic scalar potential as the state variable is used to analyze the magnetic characteristics. In the direct differentiation method, the design sensitivity, defined as the total derivative of the objective function with respect to the design variables, is calculated based on the variation of the state variable with respect to the design variable. And the variation of the state variable is calculated by differetiating the both sides of the system matrix equation obtained by applying boundary element method. Through the numerical example with simple electromagnet, the usefulness is proved.

3차원 비선형 정자장 문제의 유한요소 해석을 위한 적응 요소분할 기법 (An Adaptive Mesh Refinement Scheme for 3D Non-Linear Finite Element Analysis of Magnetostatic Problems)

  • 최용권;류재섭;고창섭
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제55권6호
    • /
    • pp.306-313
    • /
    • 2006
  • A three dimensional adaptive finite element refinement algorithm is developed for non-linear magnetostatic field problems. In the method, the edge elements are used for finite element formulation, and the local error in each element is estimated from the fact that the tangential components of magnetic field intensity and the normal components of magnetic flux density should be continuous at the interface of the two adjacent elements. Based on the estimated error, the elements which have big error are divided into several elements using bisection method. The effectiveness of the developed algorithm is proved through numerical examples.

Difference field 개념의 경계적분방정식을 이용한 3차원 정자장 해석 (3-D Magnetostatic Field Calculation by a Boundary Integral Equation Method using a Difference Field Concept)

  • 박민철;김동훈;박일한
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2000년도 하계학술대회 논문집 B
    • /
    • pp.903-905
    • /
    • 2000
  • For an accurate analysis of three dimensional linear magnetostatic problems, a new boundary integral equation formulation is presented. This formulation adopts difference magnetic field concept and uses single layer magnetic surface charge as unknown. The proposed method is capable of eliminating numerical cancellation errors inside ferromagnetic materials. In additions, computing time and storage memory are reduced by 75% in comparison with the reduced and total scalar potential formulation. Two examples are given to show its efficiency and accuracy.

  • PDF

경계요소법을 이용한 3차원 정자장 해석 (3-D Magnetostatic Field Analysis Using Boundary Element Method)

  • 전기억;고창섭;정현교;한송엽
    • 대한전기학회논문지
    • /
    • 제40권12호
    • /
    • pp.1211-1217
    • /
    • 1991
  • A three dimensional magnetostatic probodm is analyzed using the boundary element method and the magnetic scalar potential are employed in order to reduce the size of system matrix. Although the total magnetic scalar potential gives very accurate solutions at inner and outer regions of magnetic materal, the method has limitation on application because the magnetic scalar potential due to applied magnetic field sources is hard to be obtained. The reduced magnetic scalar potential gives more or less inaccurate solutions inside the magnetic material but very accurate solutions outside. Hence it can be concluded that the reduced magnetic scalar potential is very useful when the magnetic fields of outside of magnetic fields of outside of magnetic material are interested. It is also shown, from the numerical example, that the linear shape function gives more efficient solutions than the constant shape functions.

  • PDF

사면체 변요소를 이용한 3차원 정자장 해석 (Three Demensional magnetostatic Analysis Using Tetrahedral Edge Elements)

  • 김동수;이홍배;최경;정현교;한송엽
    • 대한전기학회논문지
    • /
    • 제40권8호
    • /
    • pp.751-756
    • /
    • 1991
  • In this paper, three dimensional magnetostatic fields are analysed using tetrahedral edge elements, magnetic vector potential and modified formulation of weighted residual method. If we define unknown variables in mesh edges, some conditions, such as Coulomb gauge condition in magnetic vector potential are naturally satisfied. So with less memory space, we can obtain more accurate solutions than the method where unknown variables are defined at nodes. Reliability and utility of this method are verified in two examples.

  • PDF

경계요소법을 이용한 3차원 정자장해석 (3-D Magnetostatic Field Analysis Using Boundary Element Method)

  • 전기억;고창섭;정현교;한송엽
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1991년도 하계학술대회 논문집
    • /
    • pp.97-101
    • /
    • 1991
  • A three-dimensional magnetostatic problem is analyzed using the boundary element method and the magnetic scalar potential are employed in order to reduce the size of system matrix. Although the total magnetic scalar potential gives very accurate solutions in inner and outer regions of magnetic material, it has limitation on application because the magnetic scalar potential due to applied magnetic field sources is hard to be obtained. The reduced magnetic scalar potential gives more or less inaccurate solutions inside the magnetic material but very accurate solutions outside. Hence it can be concluded that the reduced magnetic scalar potential is very useful when the magnetic fields of outside magnetic material only are interested. It is also shown, from the numerical results, that the linear shape function gives more efficient solutions than the constant shape functions because the former gives more accurate solutions in spite of relatively fewer unknowns than the latter.

  • PDF

변 요소를 이용한 3 차원 정자장 해석 (Three-dimensional magnetostatic analysis using EDGE Element)

  • 이홍배;김동수;한송엽
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1990년도 하계학술대회 논문집
    • /
    • pp.32-35
    • /
    • 1990
  • If one express the basio equations of electromagne tics in terms of differential form, one can have many physical meanings. To obtain this advantages in Finite Element Method, we should use new element. In this study, we select degree of freedom as circulation A along edges of the mesh, and use Egde Element because A is i-form. We apply this method to some examples of the 3-D magnetostatics, and obtain decrease of total nonzeros and increase of accuracy.

  • PDF