• Title/Summary/Keyword: 3-dimensional hydraulic model experiment

Search Result 22, Processing Time 0.029 seconds

An Experimental Study on the improvement of harbor tranquility by Multi-cylinder piles Structure (다원주 파일군 구조물에 의한 항내 정온도 향상에 관한 실험적 연구)

  • Lee, Sang-Hwa;Jang, Eun-Cheul;Jeong, Dong-Hwa
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.19 no.1
    • /
    • pp.66-72
    • /
    • 2007
  • In order to control waves in coastal zones effectively, multi-cylinder piles as the economical structures are suggested. A three dimensional hydraulic model experiment was performed to investigate the hydraulic characteristics of the structure. An experimental study was carried out research the effect of wave control and harbor tranquility through the wave height analysis for the existing concrete wave breaker and the structure with acrylic multi-cylinder piles type at the same location. In the results, the effective order of harbor tranquility is shown as the wave breaker > the staggered arrangement of multi-cylinder piles > the regular arrangement of multi-cylinder piles.

Analysis of the Discharge Capacity Improvement of a Lock Gate by Using 3-Dimensional Numerical Simulation (3차원 수치모의를 이용한 배수갑문의 방류능력 개선효과 분석)

  • Kim, Nam-Il;Kim, Dae-Geun;Lee, Kil-Seong;Kim, Dal-Sun
    • Journal of Korea Water Resources Association
    • /
    • v.38 no.3 s.152
    • /
    • pp.189-198
    • /
    • 2005
  • This study showed that numerical simulation can be effectively used to analyze discharge capacity according to the form and arrangement of the lock gate of a tidal power plant. For the numerical simulation, FLOW-3D with Reynolds-averaged Navier-Stokes equation as a governing equation was used. This study found that improvement of apron length and approach angle of guide wall of the lock gate causes differences in discharge capacity of $10\%$ or more. In addition, there was a difference of discharge capacity caused by the connecting structures of the drainage gate and hydraulic turbine structure and the side slope at the end of apron. This study also showed that hydraulic investigation to enhance a discharge capacity is needed when the lock gate is designed and that numerical model experiments can be a useful analysis tool to design the drainage structure, as well as the hydraulic model experiment.

Analysis of Discharge Characteristics for the Seawater Exchange Breakwater Composed of Tunneled Breakwater and Submerged Mound (잠제가 설치된 유공형 해수교환방파제의 도수량 특성 분석)

  • Jeong, Shin-Taek;Lee, Dal-Soo;Cho, Hong-Yeon;Oh, Young-Min
    • Ocean and Polar Research
    • /
    • v.26 no.3
    • /
    • pp.465-473
    • /
    • 2004
  • Five parameters such as the entrance size of the front wall, conduit size, wave period, wave height and the width of water pool were selected to estimate the inflow rate, which is basic and essential input data to design seawater exchange breakwater with a submerged mound by conducting hydraulic model experiments. In the results of multiple regression analysis, log-log equation showed a good agreement rather than linear equation and the estimation of inflow rate was well done with only two parameters except entrance size of the front wall, wave period and the width of water pool. Finally, non-dimensional flow rate equation is derived.

Movable-Bed Modeling Law for Beach Response Experiments Using Equilibrium Beach Profile Formula (평형해빈단면식을 이용한 해빈반응실험에 대한 이동상 모형법)

  • Kim, Jin Hoon;Kim, In Ho;Lee, Jung Lyul
    • Journal of Ocean Engineering and Technology
    • /
    • v.32 no.5
    • /
    • pp.351-360
    • /
    • 2018
  • The construction of large scale harbor structures at Maengbang beach, which is located on the eastern coast of Korea, is of great concern because it may cause disastrous beach erosion in the vicinity. Therefore, a hydraulic model experiment was conducted to examine the morphological changes after such construction. The water depth was scaled using the method of Van Rijn (2010), which is a well-known scale law, but the results appeared to be overestimated. The present study developed a new scale law that applies an equilibrium beach profile formula to scale the model evolution to the prototype scale. When compared with survey data observed at Maengbang beach, the proposed method showed better agreement than the method of Van Rijn (2010).

A Study on Flow Characteristics according to Meandering Low Flow Channel Shape in the Compound Cross Section Typed Straight Channel (복단면인 직선수로 내 사행 저수로의 형태에 따른 흐름특성 연구)

  • Kim, Seonghwan;Choi, Gyewoon
    • Journal of Wetlands Research
    • /
    • v.19 no.4
    • /
    • pp.484-490
    • /
    • 2017
  • In order to examine flow characteristics according to the shape of the meandering low flow channel in the compound cross section typed straight channel, we assumed the representative channel type in Korea and confirmed the validity of the 3D numerical simulation by carrying out the hydraulic model. Based on this study, numerical simulations were also conducted on other types of river channel. As a result of the numerical model test (using the velocity value measured by the water depth observation from the hydraulic model test), it was confirmed that the numerical simulation results are in good agreement with the numerical simulation results. As a result of analyzing the flow field according to the changes in the shape of the low flow channel, it was confirmed that the secondary flow examined in the previous studies occurred. Also, it was confirmed that the maximum flow velocity point moves according to the expansion cross sectional area of flow in high flow plain. Ultimately, it is thought that it is necessary to understand the position of the water impingement (which is an important factor in river design) and the extent of the impact because the change of the channel width affects the flow.

Experimental studies on mass transport in groundwater through fracture network using artificial fracture model

  • Tsuchihara Takeo;Yoshimura Masahito;Ishida Satoshi;Imaizumi Masayuki;Ohonishi Ryouichi
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2003.11a
    • /
    • pp.676-683
    • /
    • 2003
  • A laboratory experiment using artificial fracture rocks was used to understand the 3-dimensional dispersion of a tracer and the mixing process in a fractured network. In this experiment, 12cm polystyrene foam cubes with two electrodes for monitoring electric conductivity (EC) were used as artificial fractured rocks. Distilled water with 0.5mS/m was used as a tracer in water with 35mS/m and the difference of EC between the tracer and the water was monitored by a multipoint simultaneous measurement system of electrical resistance. The results showed that even if the fracture arrangement pattern was not straight in the direction of the flow, the tracer did not diffuse along individual fractures and an oval tracer plume, which was the distribution of tracer concentrations, tended to be form in the direction of the flow. The vertical cross section of the tracer distribution showed small diffusivity in the vertical direction. The calculated total tracer volume passing through each measurement point in the horizontal cross section showed while that the solute passed through measurement points near the direction of hydraulic gradient and in other directions, the passed tracer volumes were small. Using Peclet number as a criterion, it was found that the mass distribution at the fracture intersection was controlled in the stage of transition between the complete mixing model and the streamline routing model.

  • PDF

Assessment of RANS Models for 3-D Flow Analysis of SMART

  • Chun Kun Ho;Hwang Young Dong;Yoon Han Young;Kim Hee Chul;Zee Sung Quun
    • Nuclear Engineering and Technology
    • /
    • v.36 no.3
    • /
    • pp.248-262
    • /
    • 2004
  • Turbulence models are separately assessed for a three dimensional thermal-hydraulic analysis of the integral reactor SMART. Seven models (mixing length, k-l, standard $k-{\epsilon},\;k-{\epsilon}-f{\mu},\;k-{\epsilon}-v2$, RRSM, and ERRSM) are investigated for flat plate channel flow, rotating channel flow, and square sectioned U-bend duct flow. The results of these models are compared to the DNS data and experiment data. The results are assessed in terms of many aspects such as economical efficiency, accuracy, theorization, and applicability. The standard $k-{\epsilon}$ model (high Reynolds model), the $k-{\epsilon}-v2$ model, and the ERRSM (low Reynolds models) are selected from the assessment results. The standard $k-{\epsilon}$ model using small grid numbers predicts the channel flow with higher accuracy in comparison with the other eddy viscosity models in the logarithmic layer. The elliptic-relaxation type models, $k-{\epsilon}-v2$, and ERRSM have the advantage of application to complex geometries and show good prediction for near wall flows.

Assessing the Influence Radius of a Water Treatment System Installed in a Reservoir Using Tracer Experiment and 3D Numerical Simulation (추적자 실험 및 3차원 수치모의를 이용한 저수지 수처리 장치의 영향반경 평가)

  • Park, Hyung Seok;Lee, Eun Ju;Ji, Hyun Seo;Choi, Sun Hwa;Chun, Se Woong
    • Journal of Korean Society of Water Science and Technology
    • /
    • v.26 no.6
    • /
    • pp.3-12
    • /
    • 2018
  • The objective of this study was to evaluate the radius of influence of effluent of water treatment system developed for the purpose of improvement of reservoir water quality using fluorescent dye (Rhodamine-WT) tracer experiment and 3-D numerical model. The tracer experiment was carried out in a medium-sized agricultural reservoir with a storage capacity of $227,000m^3$ and an average depth of 1.6 m. A guideline with a total length of 160 m was installed at intervals of 10 m in the horizontal direction from the discharge part, and a Rhodamine measurement sensor (YSI 6130, measurement range $0-200{\mu}g/L$) was used to measure concentration changes in time, distance, and depth. Experimental design was established in advance through Jet theory and the diffusion process was simulated using ELCOM, a three dimensional hydraulic dynamics model. As a result of the study, the direct effect radius of the jet emitted from the applied water treatment system was about 50-70 m, and the radius of physical effect by the advection diffusion was judged to be 100-120 m. The numerical simulations of effluent advection-diffusion of the water treatment system using ELCOM showed very similar results to those of the impact radius analysis using the tracer experiment and jet flow empirical equations. The results provide valuable information on the spatial extent of the water quality improvement devices installed in the reservoir and the facility layout design.

Dynamic bending behaviours of RC beams under monotonic loading with variable rates

  • Xiao, Shiyun;Li, Jianbo;Mo, Yi-Lung
    • Computers and Concrete
    • /
    • v.20 no.3
    • /
    • pp.339-350
    • /
    • 2017
  • Dynamic behaviours of reinforced concrete (RC) bending beams subjected to monotonic loading with different loading rates were studied. A dynamic experiment was carried out with the electro-hydraulic servo system manufactured by MTS (Mechanical Testing and Simulation) Systems Corporation to study the effect of loading rates on the mechanical behaviours of RC beams. The monotonic displacement control loading, with loading rates of 0.1 mm/s, 0.5 mm/s, 1 mm/s, 5 mm/s and 10 mm/s, was imposed. According to the test results, the effects of loading rates on the failure model and load-displacement curve of RC beams were investigated. The influences of loading rates on the cracking, ultimate, yield and failure strengths and displacements, ductility and dissipated energy capability of RC beams were studied. Then, the three-dimensional finite element models of RC beams, with the rate-dependent DP (Drucker-Prager) model of concrete and three rate-dependent model of steel reinforcement, were described and verified using the experimental results. Finally, the dynamic mechanical behaviours and deformation behaviours of the numerical results were compared with those of the experimental results.

An Experiment on Flow Simulation Depending on Opening Configuration of Weir Using a Numerical Model (수치모형을 이용한 보의 개방구성에 따른 흐름모의 실험)

  • Kang, Tae Un;Jang, Chang-Lae
    • Ecology and Resilient Infrastructure
    • /
    • v.7 no.3
    • /
    • pp.218-226
    • /
    • 2020
  • This study investigated that the numerical experiment for analysis on free overtopping flow by a weir of levee type, as the first stage of the development of a numerical technique for prediction methodology based on a numerical model. Using 2-dimensional flow models, Nays2DH, we conducted numerical simulations based on existing experimental data to compare and verify the models. We firstly discussed the numerical reproducibility for the discontinued flow by weir shape, and calibrated the computational flow through preprocessing of channel bed. Further, we carried out and compared the simulations for prediction on the overtopping flow by the number of weir gates. As a result of simulations, we found that the maximum flow velocity of downstream of weir increases when the number of weir gates increases under the same cross sectional area of flow. Through such results, this study could present basic data for hydraulic research to consider the water flow and sediment transport depending on weir operation in the future work.