• 제목/요약/키워드: 3-dimensional finite element analysis

검색결과 1,521건 처리시간 0.029초

2차원 및 3차원 모델링에 의한 터널구조물의 구조해석 (Structural Analysis of Tunnel Structures by Two and Three Dimensional Modeling)

  • 김래현;정재훈;임성순
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제6권3호
    • /
    • pp.97-102
    • /
    • 2002
  • Two dimensional Analysis has been applied to most of tunnel lining design in these days. Two dimensional analysis uses beam or curved beam element for finite element method. But because the behaviors of tunnel concrete lining structure is near to shell, it is required to model the tunnel lining as shell structure for safety design of tunnel lining structure. In this paper, two dimensional analysis by beam element and the three dimensional analysis by shell element of tunnel concrete lining are studied, in which 3 type of tunnel lining and lateral pressure factors are considered. As results of the study, three dimensional analyses of the behavior of tunnel concrete lining structure considering lateral pressure factor shows that the moment of three dimensional analysis is greater than those of two dimensional analysis. The results shows that three dimensional analysis is necessary for safety design of tunnel lining.

대변형 쉘 요소를 이용한 박 강판 형상교정 공정의 탄소성 유한요소 해석 (Analysis of Leveling Process of Sheet Steels by Elastic-Plastic Large Deformation Shell Elements)

  • 박기철;황상무
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2003년도 춘계학술대회논문집
    • /
    • pp.319-322
    • /
    • 2003
  • For the analysis of leveling process by the 3-dimensional elastic-plastic finite element method, a finite element analysis program modeling large deformation of shell has been developed. This program fur analyzing large deformation of sheet during leveling includes spring-back analysis as well as efficient contact treatment between sheet and rolls of leveler. This is verified by the simple leveling experiment with 5 rolls at laboratory. Besides the leveling examples, problems within the category of large strain and rotation, such as 3-dimensional roll-up and gutter occurrence at continuous bending-unbending process are also tested for verification of the program. The residual curvatures of strip predicted by finite element analysis are within 20% error range of the experiment. The formation and direction of anticlastic curvature or gutter during bending-unbending under tension is predicted and this agrees with the experimental results.

  • PDF

강소성 유한요소해석의 안정화와 고능률화에 관한 연구 (Computational strategies for improving efficiency in rigid-plastic finite element analysis)

  • 추만석;김영석
    • 대한기계학회논문집
    • /
    • 제13권3호
    • /
    • pp.317-322
    • /
    • 1989
  • 본 연구에서는 Liu의 매트릭스를 강소성 유한요소법에 도입하여 통상의 소성가공 공정중에 있는 피가공물의 3차원 변형을 실용적인 수준에서 해석 가능케 하는 강소성 유한요소법을 도입하여 통상의 소성가공 공정중에 있는 피가공물의 3차원 변형을 실용적인 수준에서 해석 가능케 하는 강소성 유한요소법을 제안하고 실례를 통하여 제안한수법에 의하여 얻어진 해의 안정성과 계산효율을 검토한다.

유한 요소법을 이용한 나 슬래브의 2차원 바닥 충격진동 해석 (2-Dimensional Floor Impact Vibration Analysis in Bare Reinforced Concrete Slab Using Finite Element Method)

  • 서상호;전진용
    • 한국소음진동공학회논문집
    • /
    • 제15권5호
    • /
    • pp.604-611
    • /
    • 2005
  • The relationship between floor impact sound and vibration has been studied by field measurements, and the vibration modal characteristics have been analyzed. Vibration levels impacted by a standard heavy-weight impact source have been predicted according to the main design parameters using finite element method. Experimental results show that the dominant frequencies of the heavy impact sounds range below 100 Hz and that they are coincident with natural frequencies of the concrete slab. In addition, simple 2-dimensional finite element models are proposed to substitute 2 types of 3-dimensional models of complicated floor structural slabs those by The analytical result shows that the natural frequencies from first to fifth mode well correspond to those by experiments with an error of less than $12\%$, and acceleration peak value iscoincident with an error of less than $2\%$. Using the finite element model. vibration levels areestimated according to the design Parameters, slab thickness, compressive strength, and as a result, the thickness is revealed as effective to increase natural frequencies by $20\~30\%$ and to reduce the vibration level by 3$\~$4 dB per 30 mm of extra thickness.

Large displacement geometrically nonlinear finite element analysis of 3D Timoshenko fiber beam element

  • Hu, Zhengzhou;Wu, Minger
    • Structural Engineering and Mechanics
    • /
    • 제51권4호
    • /
    • pp.601-625
    • /
    • 2014
  • Based on continuum mechanics and the principle of virtual displacements, incremental total Lagrangian formulation (T.L.) and incremental updated Lagrangian formulation (U.L.) were presented. Both T.L. and U.L. considered the large displacement stiffness matrix, which was modified to be symmetrical matrix. According to the incremental updated Lagrangian formulation, small strain, large displacement, finite rotation of three dimensional Timoshenko fiber beam element tangent stiffness matrix was developed. Considering large displacement and finite rotation, a new type of tangent stiffness matrix of the beam element was developed. According to the basic assumption of plane section, the displacement field of an arbitrary fiber was presented in terms of nodal displacement of centroid of cross-area. In addition, shear deformation effect was taken account. Furthermore, a nonlinear finite element method program has been developed and several examples were tested to demonstrate the accuracy and generality of the three dimensional beam element.

격자압축법을 이용한 3차원 열간단조공정해석 (3-D Analysis of Hot Forging Processes using the Mesh Compression Method)

  • 홍진태;양동열;이석렬
    • 소성∙가공
    • /
    • 제11권2호
    • /
    • pp.179-186
    • /
    • 2002
  • In the finite element analysis of metal forming Processes using general Lagrangian formulation, element nodes in the mesh move and elements are distorted as the material is deformed. The excessive degeneracy of mesh interrupts finite element analysis and thus increases the error of plastic deformation energy, In this study, a remeshing scheme using so-called mesh compression method is proposed to effectively analyze the flash which is generated usually in hot forging processes. In order to verify the effectiveness of the method, several examples are tested in two-dimensional and three-dimensional problems.

3차원 판구조물 해석을 위한 삼각형요소와 사각형 요소의 비교에 관한 연구 (A Study on the Comparison of Triangular and Quadrilateral Elements for the Analysis of 3 Dimensional Plate Structures)

  • 왕지석;김유해;이우수
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제26권3호
    • /
    • pp.344-352
    • /
    • 2002
  • In the analysis of the 3 dimensional plate structures by the finite element method, the triangular elements are generally used for the global stiffness matrix of the analyzed system. But the triangular elements of the plates have some problems in the process of formulation and in the precision of analysis. The formulation of the finite element method to analyze 3 dimensional plate structures using quadrilateral elements is presented in this paper. The degree of freedom off nodal point is 6, that is, the displacements in the direction off-y-z is and the rotations about x-y-z axis and then the degree of freedom off element is 24. For the comparison of the analysis using triangular elements and quadrilateral elements, the rectangular plates subjected to the uniform load and a concentrated load on the centroid of the plate, for which the theoretical solutions have been obtained, are analyzed. The calculated deflections of the rectangular plates using the finite element method by the triangular elements and the quadrilateral elements are also compared with the deflections of the plates calculated by theoretical solutions. The defections of the rectangular plates calculated by the finite element method using the quadrilateral elements are closer to the theoretical solutions than the defections calculated by the finite element method using the triangular elements. The deflection of the centroid of plate, calculated by the finite element method, converges to that of theoretical solution as the number of elements is increased. This convergence is much more rapid for the case of using the quakrilateral elements than fir the case of using triangular elements.

3차원 유한요소 모델링을 통한 공작기계 구조의 정적 변형도 해석 (Three dimensional finite element analysis of static deflections of a machine tool structures)

  • 김현석;이수정;정광섭;이대길
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1993년도 추계학술대회 논문집
    • /
    • pp.638-643
    • /
    • 1993
  • The three dimensional finite element models for the basic deflection of linear motion guides and ball screws were developed. Form the comparison of the results calculated by the finite element method with those by the experiment, it was proved that the modeling method might be applied to real machine tool structures. Form the structural analysis of the headstock of the machine tool, it was found that the static stiffness was calculated within 6.5% error

  • PDF

3차원 유한요소해석을 이용한 엘보우의 감육 결함 특성 평가 (Evaluation on Failure Characteristics of the Local Wall Thinning Elbows Using Three Dimensional Finite Element Analysis)

  • 김태순;박치용;김진원;박재학
    • 한국안전학회지
    • /
    • 제18권3호
    • /
    • pp.39-45
    • /
    • 2003
  • The failure mode of a pipe due to local wall thinning is increasingly more attention in the nuclear power plant industry. To assess the integrity of locally wall thinned pipe, it is necessary to perform many simulations under various conditions. Because the modeling for locally wall thinned elbow is more complicated than that of straight pipe the efficient modeling method for finite element analysis is necessary. In this study, the more simple efficient modeling method of three-dimensional finite element analysis for locally wall thinned elbow has been suggested and verified. And using the method, the failure mode of local wall thinned elbows that have different thinning lengths and circumferential angles is evaluated. From the results, we concluded that the collapse load of elbows has been decreased by the increase of wall thinning shape factors such as thinning lengths and circumferential angles.

Three-dimensional finite element modelling and dynamic response analysis of track-embankment-ground system subjected to high-speed train moving loads

  • Fu, Qiang;Wu, Yang
    • Geomechanics and Engineering
    • /
    • 제19권3호
    • /
    • pp.241-254
    • /
    • 2019
  • A finite element approach is presented to examine ground vibration characteristics under various moving loads in a homogeneous half-space. Four loading modes including single load, double load, four-load, and twenty-load were simulated in a finite element analysis to observe their influence on ground vibrations. Four load moving speeds of 60, 80, 100, and 120 m/s were adopted to investigate the influence of train speed to the ground vibrations. The results demonstrated that the loading mode in a finite element analysis is reliable for train-induced vibration simulations. Additionally, a three-dimensional finite element model (3D FEM) was developed to investigate the dynamic responses of a track-ballast-embankment-ground system subjected to moving loads induced by high-speed trains. Results showed that vibration attenuations and breaks exist in the simulated wave fronts transiting through different medium materials. These tendencies are a result of the difference in the Rayleigh wave speeds of the medium materials relative to the speed of the moving train. The vibration waves induced by train loading were greatly influenced by the weakening effect of sloping surfaces on the ballast and embankment. Moreover, these tendencies were significant when the vibration waves are at medium and high frequency levels. The vibration waves reflected by the sloping surface were trapped and dissipated within the track-ballast-embankment-ground system. Thus, the vibration amplitude outside the embankment was significantly reduced.