• Title/Summary/Keyword: 3-axis Turning Center

Search Result 12, Processing Time 0.023 seconds

Tool interference check in machining of large screws defined by cross-section view (축 수직단면 형상정의에 대한 대형 스크류의 가공시 공구간섭검사)

  • 안중환
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.9 no.3
    • /
    • pp.169-177
    • /
    • 2000
  • In machining screws which are important members in mono pumps or progressive cavity pumps CNC turning center with 3 axes is usually used. This sort of screw machining requires large amount of CL data points and rotational tools are used in machining. When working out the CL data points consideration of possible tool interference is important in order to avoid undercut. This paper describes the checking methods of tool interference in the screw machining on the CNC turning center. First of all a specific shape of a screw cross-section that could commonly be applied to all screws was chosen and then possible tool interference associated with that shape was identified. Checking method was mathematically developed and verified. This checking method will be utilized in the CAM system developed by the authors for screw machining on the 3-axis CNC turning center.

  • PDF

A Development of a Multi-Axis Turning Center(I) (다기능 복합가공기 개발에 대한 연구(I))

  • 이시다
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1997.10a
    • /
    • pp.243-247
    • /
    • 1997
  • 기존의 복합 Turning Center 보다 비구심상태에서의 가공, 3축밀링가공 및 3축/4축 동시 Milling가공 등의 특징을 갖고 복잡한 형상과 기능을 갖도 있는 부품 생산용 각형 FMS/C의 기본기계가 될 다기능 복합가공기[최대가공경 310mm *최대가공길이600mm, 6축제어(4축동시가공), ATC Magazine 20개, 주축18.5KW, 제2주축 15KW 회전수36-1,600RPM의 강력, 고속, 정밀 다기능 복합가공기]를 제2차 선도기술개발사업을 통해 개발을 추진하고 있다.

  • PDF

Screw machining system by use of rotational tool with Y axis off-set on a CNC turning center (Y축이 Off-Set된 회전공구를 사용한 스크류 가공시스템)

  • Choi, N.H.;Lee, W.K.;Ahn, J.H.
    • Proceedings of the KSME Conference
    • /
    • 2000.04a
    • /
    • pp.809-813
    • /
    • 2000
  • In this study, screw machining system by use of a rotational tool such as an end-mill or a face cutter with Y axis off-set on a CNC turing center was developed for quick machining. In this system, It was possible to use different tools for different processes, and by off-setting the tool in Y direction by calculated amount it was possible to avoid tool interference problem which could occur within the central area at the end of a tool. In addition, machining a screw with a helix of up to 3 different leads combined and with tapered minor diameter was possible.

  • PDF

The Status of Accident and Prevention Measures for Ladles (래들에 의한 재해발생 실태와 예방대책)

  • Choi, Seung Ju;Shin, Woon Chul
    • Journal of the Korea Safety Management & Science
    • /
    • v.16 no.3
    • /
    • pp.201-207
    • /
    • 2014
  • This study is aimed to improve safety of ladle in the metal products manufacturing industry. Burns may occur from spills, spatters or eruptions of hot metal from ladles during pouring or transporting. According to the statistics of occupational accidents about the ladle, many victims were exposed to or contacted with extreme temperatures. The many fatal injuries occurred as a result of unexpected discharging of molten metal due to tipping over ladles. To prevent ladles from turning over, the trunnion axis shall be located below the center of gravity of the ladle at all operating condition. For this purpose, the equation is proposed to calculate the minimum location of a trunnion axis for definite static stability when tilting.

A Study on the Adjustment of the Magnetic Compass on the Vessel alongside the Wharf (접안된 선박에 있어서 자기 compass 의 자착수정에 관한 연구)

  • 이상집;노태현
    • Journal of the Korean Institute of Navigation
    • /
    • v.12 no.2
    • /
    • pp.23-32
    • /
    • 1988
  • This paper offers a method of magnetic compass adjustment for the vessel alongside the wharf using newly designed magnetic north former, which makes the same magnetic field-change as the turning vessel does. The characteristics of the magnetic north former was examined by observing the deviation curves of the magnetic compass installed on the compass deviascop at laboratory. The magnetic north former consists of A and B arms which hold the permanent bar magnets at the both ends of each arm. The arm is to rotae in the horizontal plane about the vertical axis fixed at the center boss of the magnetic compass and it is to compensate the horizontal plane about the vertical axis fixed at the center boss of the magnetic compass and it is to compensate the horizontal component of the earth's field. The B arm makes the artificial magnetic north around the magnetic compass for every ship's heading. The results of investigation are summarized as follows ; 1. The observation and correction of magnetic compass deviation can be done without swinging the ship, of the effect of D coefficient is negligible. 2. The residual deviation curve of the magnetic compass depends on the accuracy of deduced value of ship's multplier($\lambda$). 3. The errors due to the inaccuracy of deduced value of ship's multiplier change in the same way as the B and C coefficient do.

  • PDF

A study on the test workpiece for accuracy analysis of multi-axis turning and milling center (선반 및 밀링 겸용 다축 복합가공기의 정밀도 검증을 위한 표준공작물에 대한 연구)

  • Shin, Jae-Hun;Kim, Hong-Seok;Youn, Jae-Woong
    • Journal of the Korea Convergence Society
    • /
    • v.9 no.11
    • /
    • pp.277-284
    • /
    • 2018
  • Recently, the demand for precision machining through multi-axis machining has been greatly increased. However, it is difficult to evaluate the geometrical accuracy of the machine tool because of its complicated geometric relationship. In this study, we organized the KS/ISO specifications which are distributed in various regulations, and re-organized the geometrical precision evaluation items of multi-axis machine tools. In addition, a test workpiece was proposed to evaluate and analyze the accuracy of a multi-axis machine tool, and a test workpiece was machined according to predetermined methods and procedures, and then the machined surfaces were measured using CMM. As a result, it was verified that the machining results of the standard workpiece and the precision of the machine tool were very similar qualitatively and quantitatively. From these results, it can be confirmed that the precision analysis of the multi-axis machine tool is possible only by machining the test workpiece.

Removal of mid-frequency error from the off-axis mirror

  • Kim, Sanghyuk;Pak, Soojong;Jeong, Byeongjoon;Shin, Sangkyo;Kim, Geon Hee;Lee, Gil Jae;Chang, Seunghyuk;Yoo, Song Min;Lee, Kwang Jo;Lee, Hyuckee
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.39 no.2
    • /
    • pp.103-103
    • /
    • 2014
  • Manufacturing of lens and mirror using Diamond Turning Machine (DTM) offers distinct advantages including short fabrication time and low cost as compared to grinding or polishing process. However, the DTM process can leave mid-frequency error in the optical surface which generates an undesirable diffraction effect and stray light. The mid-frequency error is expected to be eliminated by mechanical polishing after the DTM process, but polishing of soft surface of ductile aluminum is extremely difficult because the polishing process inevitably degrades the surface form accuracy. In order to increase its surface hardness, we performed electroless nickel plating on the surface of diamond-turned aluminum (Al-6061T6) off-axis mirrors, which was followed by the 6-hour-long baking process at $200^{\circ}C$ for improving its hardness. Then we polished the nickel plated off-axis mirrors to remove the mid-frequency error and measured polished mirror surfaces using the optical surface profilometer (NT 2000, Wyko Inc.). Finally, we ascertained that the mid-frequency error on the mirror surface was successfully removed. During the whole processes of nickel plating and polishing, we monitored the form accuracy using the ultra-high accurate 3-D profilometer (UA3P, Panasonic Corp.) to maintain it within the allowable tolerance range (< tens of nm). The polished off-axis mirror was optically tested using a visible laser source and a pinhole, and the airy pattern obtained from the polished mirror was compared with the unpolished case to check the influence of mid-frequency error on optical images.

  • PDF

The Kinetic Analysis of Arabesque Turn Motion in Modern Dance by Upper Extremity Usage (상지이용유무에 따른 현대무용 아라베스크 턴 동작의 운동역학적 분석)

  • Park, Yang-Sun;Kim, Ji-Hye
    • Korean Journal of Applied Biomechanics
    • /
    • v.19 no.3
    • /
    • pp.457-466
    • /
    • 2009
  • This study puts the purpose in providing the scientific basis of dance motion as an artistic expression by analyzing the kinematic variable and the distribution factor of power affecting the motion, which is connected to the turn, right after the arabesque motion according to the existence and non existence of using the arm in the arabesque motion of modern dance. As a result of this study, arabesque turn motion, not using the upper limbs, used more turning force of head and body than the arabesque turn motion, using the upper limbs, and arabesque turn using the upper limbs obtained the turning force, using the right shoulder. The range of the hip joint on the left and the position change of left tiptoe in the Arabesque turn motion using the upper limbs is largely ascended to the vertical axis, while, the position of tiptoe in the Arabesque turn motion, not using the upper limbs is dropped to the lower part of each event. In the replacement of body center, Arabesque turn motion using the upper limbs is moved more to the turning axis than arabesque turn motion not using the upper limbs. As a result of maximum vertical ground reaction force, Arabesque turn motion using the upper limbs appeared to be a lower value than the Arabesque turn motion not using the upper limbs.

Manufacturing Method and Performance Evaluation of an Off-Axis Aluminum Mirror (비축 알루미늄 반사경의 DTM 가공 방법 및 성능 평가)

  • Jeong, Byeongjoon;Kim, Sanghyuk;Pak, Soojong;Kim, Geon Hee;Hyun, Sangwon;Jeon, Min Woo;Shin, Sang-Kyo;Bog, Min-Gab;Chang, Seunghyuk
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.40 no.1
    • /
    • pp.82.3-83
    • /
    • 2015
  • 비축 반사경의 DTM (Diamond Turning Machine) 가공을 하기 전에는 시간 및 비용의 절감을 위해 CNC(Computerized Numerically Controlled Machine Tools)를 이용하여 비축면의 곡률반경과 가장 유사한 형태의 구면으로 1차 가공 후 3축 이상을 제어할 수 있는 MC (Machining Center)를 이용하여 근사한 비축면을 먼저 가공한다. 이후 DTM으로 광학계에서 요구하는 형상 정밀도 및 표면 조도를 만족하는 비축면을 완성한다. 하지만 비축면을 가공하는 경우, 일반적인 축 대칭 광학계와 달리 가공장비에 장착된 기상계측기를 사용할 수 없기 때문에 외부 장비를 이용하여 반사경 표면을 측정해야한다. 이때 측정과 가공 단계 사이에서 정렬오차가 발생하여 반사경의 형상 정밀도 향상을 위한 보상가공에 어려움이 있다. 본 연구에서는 비축면 반사경의 가공과 측정 과정 사이에 발생하는 정렬오차를 최소화 할 수 있는 DTM 가공용 지그를 설계 및 제작하였다. 또, DTM으로 가공한 반사경의 측정값과 설계값을 비교하여 알루미늄 반사경의 광학 성능을 평가하였다. 이러한 성능 평가 결과는 비축면 반사경의 형상 보상가공을 위한 모델링 방법을 고안하는데에 있어 핵심 자료가 될 것이다.

  • PDF

Design and Testing of a Long Stroke Fast Tool Servo for Ultra-precision Free-form Machining (초정밀 자유곡면 가공용 long stroke fast tool servo의 설계 및 특성 평가)

  • Kim, Ho-Sang;Lee, Kwang-Il
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.2
    • /
    • pp.35-44
    • /
    • 2009
  • Long stroke Fast Tool Servo (LFTS) with maximum stroke of $432{\mu}m$ is designed, manufactured and tested for fabrication of optical free-form surfaces. The large amount of stroke in LFTS has been realized by utilizing the hinge and lever mechanisms which enable the displacement amplification ratio of 4.3. In this mechanism the peculiar shape was devised for maximizing the displacement of end tip in LFTS and special mechanical spring has been mounted to provide the sufficient preload to the piezoelectric actuator. Also, its longitudinal motion of tool tip can be measured by capacitive type displacement sensor and closed-loop controlled to overcome the nonlinear hysteresis. In order to verify the static and dynamic characteristics of designed LFTS, several features including step response, frequency response and cut-off frequency in closed-loop mode were experimentally examined. Also, basic machining result shows that the proposed LFTS is capable of generating the optical free-form surface as an additional axis in diamond turning machine.