• 제목/요약/키워드: 3-Way valve

검색결과 104건 처리시간 0.028초

오리피스와 방향제어밸브를 이용한 미세유량 분사제어시스템 (Infinitesimal Fluid Injection Control System by using an Orifice and a Directional Control Valve)

  • 정은석;오인호;이일영
    • 한국마린엔지니어링학회:학술대회논문집
    • /
    • 한국마린엔지니어링학회 2006년도 전기학술대회논문집
    • /
    • pp.67-68
    • /
    • 2006
  • This study suggests a precision flow control system that enables fluid injection of a few grams at a time in a few ms time duration. The fluid injection system suggested here consists of a high pressure fluid pump, a 3 way 3 position directional control valve, an injector and an orifice. The orifice is located between the directional control valve and the injector. By supplying current signal to the directional control valve, the prescribed small amount of fluid can be supplied to a plant through the injector. The control robustness of the suggested system against the disturbances like the pressure change in a plant and the viscosity variation of the injected fluid is secured easily by using an orifice with very small inside diameter and setting the supply pressure with comparatively high value. The control performances of the suggested system are verified by numerical simulations and experiments. The outcomes of this research could be applied to the common rail injection control of lubrication oil for large size marine diesel engines, and other industrial plants.

  • PDF

압력제어밸브를 통한 누수량의 추정과 활용 (Leakage Control and Application Using the Pressure Reducing Valve)

  • 김신걸;김윤환;김경필;구자용
    • 상하수도학회지
    • /
    • 제20권2호
    • /
    • pp.197-206
    • /
    • 2006
  • The leakage in the water distribution system means both the loss of money and water resource. To minimize the leakage, we introduced the pressure control method using the pressure reducing valve and pump schedule. For the pressure control, the total leakage is needed to divide into each node. In this study, EPANET 2.0 was used to simulate the water networks in two selected blocks after the total leakage was distributed with each node by four ways. The leakage was allocated into each node as water measured by meter, water pressure, water faucets and Lpcd and simulated by EPANET 2.0. Regardless of the leakage distribution ways, there was no significant difference between the measured water and the estimated water pressure. Thus, the leakage distribution way using water pressures estimated by simulation could be recommended. The scenarios controlling the pressure reducing valve and pump were made in two blocks(A and B). $86,713m^3/year$ leakage in the A block and $11,442m^3/year$ in the B block could be reduced as controlling the pressure reducing valve and pump schedule. It was shown that the fifty million won a year can be saved in the A block and 6.8 million won in the B block.

SCV를 장착한 CNG 엔진의 연소 및 배출가스 특성 (Combustion and Emission Characteristics in CNG Engine with SCV)

  • 김진영;박원옥;공태원;하종률
    • 한국자동차공학회논문집
    • /
    • 제11권3호
    • /
    • pp.1-6
    • /
    • 2003
  • Natural gas is one of the promising alternative fuels because of the abundant deposits and the cleanness of emission gas. CNG has a lot of merits except lower burning speed has a slow disadvantage. One way to overcome the disadvantage is to raise a turbulence intensity. We give various intake for changing turbulence intensity in the cylinder by three kinds of swirl control valve with a way to raise a turbulence intensity. In the present study, a $1.8\ell$ conventional gasoline engine is modified to use a CNG as a fuel instead of gasoline. We try to virify combustion and emission characteristics in each engine parameters. Parameters of experimentation are equivalence ratio, spark timing and intake flow change. The results of this study are as swirl flows. In the case of adding swirl flow, burning speed and torque are increased. But NOx and THC concentration are increased a little respectively.

고주파수 PWM제어를 이용한 ABS의 맥동 저감에 관한 연구 (A Study on Falling Pressure Surge of ABS Using High Frequency PWM Control)

  • 이용주;김병우;박호
    • 한국공작기계학회논문집
    • /
    • 제12권3호
    • /
    • pp.38-44
    • /
    • 2003
  • The solenoid valve in ABS hydraulic modulator is a two directional on-off valve and is controlled by around 100Hz high speed pulse width modulation. When the valve is switched from open state to closed state, noise and vibration due to pressure surge phenomena in the hydraulic line and wheel cylinder are made. In this study, we identify Pressure surge phenomenon in the braking process of a ABS, and investigate the way to reduce the phenomenon. For the purpose of theoretical analysis on the pressure surge in the closed state hydraulic line, characteristic curve method based on wave equation was utilized. To reduce the surge, high frequency control of 20kHz was attempted. The result showed that the surge pressure of 50% was reduced compared to one observed in the low frequency control. Duty variation of high frequency can control current of solenoid valve and prevent sudden change of displacement.

차량용 전동식 스크롤 압축기의 배압제어밸브 설계 (Design of Back Pressure Control Valve for Automotive Scroll Compressor)

  • 남보영;구인회;한영창;이건호
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2007년도 동계학술발표대회 논문집
    • /
    • pp.410-415
    • /
    • 2007
  • The optimization of back pressure chamber is one of the most important factors in designing scroll compressors, because it has a great influence on the efficiencies and other design parameters. The design process can be divided into 2 parts. One is obtaining the optimum pressure of the chamber and keeping it in constant value. And the other is finding out the minimum inflow rate of medium with which back pressure chamber is filled. In this study we are focused on the first step. At first we added a simple structure that could change back pressure without reassembling compressor. It makes the optimum back pressure be obtained. And then we devised an equipment that the back pressure control valve assembly could be independently tested with. A spring was redesigned to decrease stiffness variation. And sealing mechanism of back pressure control valve was improved to more effective way. As a result it was verified in a real mode test that back pressure variation could be stabilized within 2.3% when discharge pressure and operating frequency varied. And the integrated structure of back pressure control valve is expected to contribute to an effective manufacturing process.

  • PDF

FPSO 연료가스 압축 시스템용 부정류 방지 밸브의 유량 평가 프로그램 개발 (Discharge Evaluation Program Development of Anti-surge Valve for FPSO Fuel Gas Compressor System)

  • 박형욱;이승민;조종래
    • 한국정밀공학회지
    • /
    • 제28권12호
    • /
    • pp.1411-1418
    • /
    • 2011
  • In this study, to avoid surging in the system as a way to ensure the proper discharge requires the design of the valve capacity rating objective is to develop a program. Approximation algorithm for the capacity evaluation is suggested. Loss coefficients obtained by the algorithm is calculated put in the governing equation for the valve flow coefficient and capacity. Calculated values were compared with numerical analysis results for the verifying their validity. The proven formula is created using Excel and it can be easily available the valve design engineers. Creation of analysis models were using a version of Unigraphics NX 4.0, numerical analysis were using a flow analysis commercial program ANSYS CFX 12.0 version. Equations were referenced 'Handbook of Hydraulic Resistance - 3rd Edition'.

전산모사에 의한 공압구동장치의 비선형 해석 (Nonlinear analysis of a pneumatic actuation system by digital simulation)

  • 조택동;신효필;문의준
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1991년도 한국자동제어학술회의논문집(국내학술편); KOEX, Seoul; 22-24 Oct. 1991
    • /
    • pp.1104-1109
    • /
    • 1991
  • Recently, Pneumatic Actuation System (PAS) has been used increasingly as a high performance fin-control servo actuation systems because of the special advantages of pneumatic units: primarily their low cost, small size, light weight, and tolerance to broad temperature extremes. In this study, a nonlinear model of PAS is derived through the detailed analysis of the major components in the typical system. The model includes nonlinear flow-pressure relationships of the flow through the solenoid valve openings and orifices, PWM algorithm for driving two solenoid valves as a closed-center 3-way valve for minimum gas consumption, solenoid valve dynamics, saturation, and friction. Simulation results are compared with the experimental ones for square and sinusoidal inputs to see the validity of the model. Independent of the shape and magnitude of the input signals, both results are in good agreements with minor difference.

  • PDF

열교환코일 내장형 태양열 축열조의 성능향상 (제2보 시뮬레이션) (Performance Enhancement of Solar Thermal Storage Tank with Heat Exchange Coils (Part 2 : Simulation))

  • 김종현;이용걸;이욱재;홍희기
    • 설비공학논문집
    • /
    • 제28권9호
    • /
    • pp.361-366
    • /
    • 2016
  • As an alternative of well-mixed storage tank with lower coil only, we have proposed a tank with lower and upper coils and verified a superior thermal stratification in a tank, which results in increased collector efficiency and solar fraction. But the phenomenon of temperature reversal was often experimentally observed in the tank, so a revised control was successfully applied which is to heat only lower coil using three way valve if temperature reversal occurs and to operate the collector with low flow rate when the condition of solar radiation is not good. In the present study, using TRNSYS we compared the existing lower heating and the proposed lower and upper heating with a control preventing temperature reversal. The results showed that the proposed method has an increase of collector efficiency by 5.1% and solar fraction by 3.2%.

A Study on the Design of Back Pressure for Automotive Scroll Compressor

  • Koo, In-Hwe;Lee, Geon-Ho
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • 제17권1호
    • /
    • pp.1-6
    • /
    • 2009
  • The optimum design of back pressure chamber is one of the most important factors in designing scroll compressors because it has a great influence on the efficiency and other design parameters. The design process can be divided into 2 parts. One is obtaining the optimum pressure of the chamber and keeping it in constant value. The other is finding out the minimum inflow rate of medium with which back pressure chamber is filled. In this study we are focused on the first step. At first we added a simple structure that can change back pressure without reassembling compressor. It makes possible to obtaining optimum back pressure. Then we designed an equipment that the back pressure control valve assembly could be independently tested with. Spring was redesigned to decrease stiffness variation. Also sealing mechanism of back pressure control valve was improved to more effective way. As a result, it was verified that in a real mode test back pressure variation could be retained in 2.3% with discharge pressure and operating frequency varied. In addition the integrated structure of back pressure control valve is expected to contribute to effective manufacturing process.