• 제목/요약/키워드: 3-Mass System

검색결과 2,656건 처리시간 0.027초

곤충병원성 진균의 대량 배양체계에서의 성장율 (Growth Rate of Entomopathogenic Fungi in Mass Culture System)

  • 이인기;서종복
    • 한국잠사곤충학회지
    • /
    • 제38권2호
    • /
    • pp.150-153
    • /
    • 1996
  • 1차 액체배양액과 2차 pellet 배지로 이루어지는 대량배양체계의 다른 곤충병원성 곰팡이인 Beauveria bassiana, Beauveria brongniartii, Metarhizum anisopliae, Verticillium lecanii 등에 대한 효용성을 조사하기 위하여 단균사 및 분생포자의 성장율을 비교하였다. 그 결과, 액체배양액에서 단균사의 성장율은 접종 후 72시간에 그 수가 최초 접종수에 비해 103-104배까지 증가함을 확인할 수 있었으며, pellet 배지에서 분생자의 수는 접종 후 3주 째에 103배까지 증가됨을 확인할 수 있었다. 본 실험의 결과 진균의 대량배양을 위해 선발된 1차 액체배양액과 2차 pellet 배지는 여러 곤충병원성 진균의 성장에 효율적인 체계임을 확인할 수 있었다.

  • PDF

회전하는 충돌제트/유출냉각기법에서 분사홀 변화에 따른 열/물질전달 특성 (Heat/Mass Transfer Characteristics for Variation of Injection Hole in Rotating Impingement/Effusion Cooling System)

  • 홍성국;조형희
    • 한국유체기계학회 논문집
    • /
    • 제10권3호
    • /
    • pp.25-32
    • /
    • 2007
  • The present paper deals with the heat/mass transfer characteristics for the rotating impingement/effusion cooling system. By changing the size and number of injection hole, its effects on heat/mass transfer are investigated and three different injection hole cases are considered such as LH, DH and SH, respectively. Reynolds number based on the effusion hole diameter is fixed to 3,330 and two jet orientations are considered. A naphthalene sublimation method is used to obtain the heat/mass transfer coefficients on the effusion plate. The LH case shows that the local heat/mass transfer is significantly varied by the rotation. Moreover, the low and non-uniform Sh distributions occur because the impinging jet is deflected by Coriolis force. Meanwhile, for DH and SH cases, the local heat/mass transfer coefficients are enhanced significantly compared to LH case and the rotation effect decreases with increasing the jet velocity. The averaged Sh value of DH and SH case rises up to 45%, 85% than that of LH case. However, the uniformity of heat/mass transfer deteriorates due to the steep variation of heat/mass transfer.

LMI 이론에 의한 삼관성 시스템의 진동억제 (Vibration Suppression Control of 3-mass Inertia System by using LMI Theory)

  • 최연욱
    • 융합신호처리학회논문지
    • /
    • 제2권3호
    • /
    • pp.65-72
    • /
    • 2001
  • 일반적으로 관성시스템의 제어 문제는 결국, 시스템 자체에서 발생하는 진동을 최대한 억제하면서 빠른 시간에 출력이 기준입력을 추종하는데 있다. 이 경우 문제로 되는 것은 시스템의 모델링 과정에서 발생하는 플랜트의 불확실성과 parameter 변동이다. 여기서는 일반적인 강인한 제어기 설계 이론의 하나인 H$_{*}$ 이론이 가지는 단점인 제어기의 보수성을 극복하면서, 동시에 출력의 과도응답특성을 개선하기 위한 방법으로 H$_2$이론을 병용하고 이를 LMI 이론으로 해석하였다. 이 과정에서 3 관성시스템에 LMI 이론을 적용하기 위한 일반화플랜트의 모형을 제시하고 이것의 유효성을, 모델의 불화실성과 parameter변동을 동시에 고려한 simulation을 통하여 확인하였다.

  • PDF

고속 엘리베이터 시스템용 시뮬레이터 개발 (Development of Simulator for High-Speed Elevator System)

  • 류형민;김성준;설승기;권태석;김기수;심영석;석기룡
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제51권2호
    • /
    • pp.77-82
    • /
    • 2002
  • This Paper describes the dynamic load simulator for high-speed elevator system, which can emulate 3-mass system as well as equivalent 1-mass system. In order to implement the equivalent inertia of entire elevator system the conventional simulators have generally utilized the mechanical inertia(flywheel) with large radius, which makes the entire system large and heavy. In addition, the mechanical inertia should be replaced each time in order to est another elevator system. In this paper, the dynamic load simulation methods using electrical inertia are Presented so hat the volume and weight of simulator system are greatly reduced and the adjustment of inertia value can be achieved easily by software. Experimental results show the feasibility of this simulator system.

Low Frequency Vibration Energy Harvester Using Stopper-Engaged Dynamic Magnifier for Increased Power and Wide Bandwidth

  • Halim, Miah Abdul;Kim, Dae Heum;Park, Jae Yeong
    • Journal of Electrical Engineering and Technology
    • /
    • 제11권3호
    • /
    • pp.707-714
    • /
    • 2016
  • We present a piezoelectric energy harvester with stopper-engaged dynamic magnifier which is capable of significantly increasing the operating bandwidth and the energy (power) harvested from a broad range of low frequency vibrations (<30 Hz). It uses a mass-loaded polymer beam (primary spring-mass system) that works as a dynamic magnifier for another mass-loaded piezoelectric beam (secondary spring-mass system) clamped on primary mass, constituting a two-degree-of-freedom (2-DOF) system. Use of polymer (polycarbonate) as the primary beam allows the harvester not only to respond to low frequency vibrations but also generates high impulsive force while the primary mass engages the base stopper. Upon excitation, the dynamic magnifier causes mechanical impact on the base stopper and transfers a secondary shock (in the form of impulsive force) to the energy harvesting element resulting in an increased strain in it and triggers nonlinear frequency up-conversion mechanism. Therefore, it generates almost four times larger average power and exhibits over 250% wider half-power bandwidth than those of its conventional 2-DOF counterpart (without stopper). Experimental results indicate that the proposed device is highly applicable to vibration energy harvesting in automobiles.

가열원관군 주위를 유동하는 굴패각의 탈착과정에 대한 열 및 물질전달에 관한 연구 (Study on the Heat and Mass Transfer Characteristics of Oyster Shell Flowing through the Bundle of Heating Pipes)

  • 김명준
    • 동력기계공학회지
    • /
    • 제17권3호
    • /
    • pp.28-34
    • /
    • 2013
  • This study is experimentally performed for using the oyster shell as a desiccant in the fluidized bed with bundle of heating pipe. The test material is oyster shell from fishery wastes which can use without costs. The main parameters of experiment are inlet air temperature, velocity of inlet air and heat flux of heating pipes. Also the geometry of heating pipe is treated as important parameter. From this study, the effect of inlet air temperature and input heat flux have much affect to increase the heat and mass transfer. On the other hand, the effect of inlet air velocity has less affect to increase the heat and mass transfer. And it is clarified that the oyster shell has sufficient probability for using as a desiccant in air-conditioning system.

산업용 로봇의 유연관절 제어기 설계: Part 1 - 2관성계 모델링 (Controller Design for Flexible Joint of Industrial Robots: Part 1 - Modeling of the Two-Mass System)

  • 박종현;이상훈
    • 제어로봇시스템학회논문지
    • /
    • 제12권3호
    • /
    • pp.269-276
    • /
    • 2006
  • Increasing requirements for the high quality of industrial robot performance made the vibration control issue very important because the vibration makes it difficult to achieve quick response of robot motion and may bring mechanical damage to the robot. This paper presents the vibration mechanism of an industrial robot which has flexible joints. The joint flexibility of the robot is modeled as a two-mass system and its dynamic characteristics are analysed. And some characteristics of the two-mass system, especially for the joint of industrial robots, such as disturbance, non-linearity and time-varying characteristics are studied. And finally, some considerations on controller design for the flexible joint of industrial robots are discussed.

Estimation of viscous and Coulomb damping from free-vibration data by a least-squares curve-fitting analysis

  • Slemp, Wesley C.H.;Hallauer, William L. Jr.;Kapania, Rakesh K.
    • Smart Structures and Systems
    • /
    • 제4권3호
    • /
    • pp.279-290
    • /
    • 2008
  • The modeling and parameter estimation of a damped one-degree-of-freedom mass-spring system is examined. This paper presents a method for estimating the system parameters (damping coefficients and natural frequency) from measured free-vibration motion of a system that is modeled to include both subcritical viscous damping and kinetic Coulomb friction. The method applies a commercially available least-squares curve-fitting software function to fit the known solution of the equations of motion to the measured response. The method was tested through numerical simulation, and it was applied to experimental data collected from a laboratory mass-spring apparatus. The mass of this apparatus translates on linear bearings, which are the primary source of light inherent damping. Results indicate that the curve-fitting method is effective and accurate for both perfect and noisy measurements from a lightly damped mass-spring system.

A Review of Heat and Mass Transfer Analysis for Absorption Process

  • Kim, Jin-Kyeong;Kang, Yong-Tae
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • 제14권4호
    • /
    • pp.131-137
    • /
    • 2006
  • The absorber in which heat and mass transfer phenomena occur simultaneously is one of the most critical components in the absorption system. It has the most significant influence on the performance and the size of the absorption system. During the absorption process, heat and mass transfer resistances exist in both liquid and vapor regions, so that the heat transfer mode should be carefully selected to reduce them. The objective of this paper is to review the previous papers analysing mathematical models of simultaneous heat and mass transfer phenomena during the absorption process. The most conventional working fluids ($H_2O$LiBr and $NH_3/H_2O$) are considered and the most common absorption modes (falling film and bubble mode) are dealt with in this review.

A study on the effects of vertical mass irregularity on seismic performance of tunnel-form structural system

  • Mohsenian, Vahid;Nikkhoo, Ali
    • Advances in concrete construction
    • /
    • 제7권3호
    • /
    • pp.131-141
    • /
    • 2019
  • Irregular distribution of mass in elevation is regarded as a structural irregularity by which the modes with high energy levels are excited and in addition, it can lead the structure to withstanding concentration of nonlinear deformations and consequently, suffer from unpredictable local or global damages. Accordingly, with respect to the lack of knowledge and insight towards the performance of concrete buildings making use of tunnel-form structural system in seismic events, it is of utmost significance to assess seismic vulnerability of such structures involved in vertical mass irregularity. To resolve such a crucial drawback, this papers aims to seismically assess vulnerability of RC tunnel-form buildings considering effects of irregular mass distribution. The results indicate that modal responses are not affected by building's height and patterns of mass distribution in elevation. Moreover, there was no considerable effect observed on the performance levels under DBE and MCE hazard scenarios within different patterns of irregular mass distribution. In conclusion, it appears that necessarily of vertical regularity for tunnel-form buildings, is somehow drastic and conservative at least for the buildings and irregularity patterns studied herein.