Browse > Article
http://dx.doi.org/10.5370/JEET.2016.11.3.707

Low Frequency Vibration Energy Harvester Using Stopper-Engaged Dynamic Magnifier for Increased Power and Wide Bandwidth  

Halim, Miah Abdul (Department of Electronic Engineering, Kwangwoon University)
Kim, Dae Heum (Department of Chemical Engineering, Kwangwoon University)
Park, Jae Yeong (Department of Electronic Engineering, Kwangwoon University)
Publication Information
Journal of Electrical Engineering and Technology / v.11, no.3, 2016 , pp. 707-714 More about this Journal
Abstract
We present a piezoelectric energy harvester with stopper-engaged dynamic magnifier which is capable of significantly increasing the operating bandwidth and the energy (power) harvested from a broad range of low frequency vibrations (<30 Hz). It uses a mass-loaded polymer beam (primary spring-mass system) that works as a dynamic magnifier for another mass-loaded piezoelectric beam (secondary spring-mass system) clamped on primary mass, constituting a two-degree-of-freedom (2-DOF) system. Use of polymer (polycarbonate) as the primary beam allows the harvester not only to respond to low frequency vibrations but also generates high impulsive force while the primary mass engages the base stopper. Upon excitation, the dynamic magnifier causes mechanical impact on the base stopper and transfers a secondary shock (in the form of impulsive force) to the energy harvesting element resulting in an increased strain in it and triggers nonlinear frequency up-conversion mechanism. Therefore, it generates almost four times larger average power and exhibits over 250% wider half-power bandwidth than those of its conventional 2-DOF counterpart (without stopper). Experimental results indicate that the proposed device is highly applicable to vibration energy harvesting in automobiles.
Keywords
2-DOF system; Base stopper; Dynamic magnifier; Frequency up-conversion; Mechanical impact; Wideband operation;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Z. Xiao, T. Q. Yang, Y. Dong, and X. C. Wang, Energy harvester array using piezoelectric circular diaphragm for broadband vibration, Appl. Phys. Lett., Vol. 104, No. 22, pp. 223904-1–223904-4, Jun. 2014.   DOI
2 E. K. Reilly, F. Burghardt, R. Fain, and P. Wright, Powering a wireless sensor node with a vibration-driven piezoelectric energy harvester, Smart Mater. Struct., Vol. 20, No. 12, pp. 125006, Nov. 2011.   DOI
3 A. Mathers, K. S. Moon, and J. Yi, A vibration-based PMN-PT energy harvester, IEEE Sens. J., Vol. 9, No. 7, pp. 731-739, Jul. 2009.   DOI
4 S. R. Anton and H. A. Sodano, A review of power harvesting using piezoelectric materials (2003-2006), Smart Mater. Struct., Vol. 16, No. 3, pp. R1-R21, May 2007.   DOI
5 C. B. Williams and R. B. Yates, Analysis of a micro-electric generator for micro systems, Sens. Actuators A, Vol. 52, No. 1-3, pp. 8-11, Mar.-Apr. 1996.   DOI
6 H. Külah and K. Najafi, Energy scavenging from low-frequency vibrations by using frequency up-conversion for wireless sensor applications, IEEE Sens. J., Vol. 8, No. 3 pp. 261-268, Mar. 2008.   DOI
7 A. F. Arrieta, P. Hagedorn, A. Erturk, and D. J. Inman, A piezoelectric bistable plate for nonlinear broadband energy harvesting, Appl. Phys. Lett., Vol. 97, No. 10, pp. 104102-1–104102-3, Sep. 2010.   DOI
8 S. Qi, R. Shuttleworth, S. O. Oyadiji, and J. Wright, Design of a multi-resonant beam for broadband piezoelectric energy harvesting, Smart Mater. Struct., Vol. 19, No. 9, pp. 094009, Aug. 2010.   DOI
9 H. Xue, Y. Hu, and Q. -M. Wang, Broadband piezo-electric energy harvesting devices using multiple bimorphs with different operating frequencies, IEEE Trans. Ultrason. Ferroelectr. Freq. Control, Vol. 55, No. 9, pp. 2104-2108, Sep. 2008.   DOI
10 Z. Yang and J. Yang, Connected vibrating piezo-electric bimorph beams as a wide-band piezoelectric power harvester, J. Intell. Mater. Syst. Struct., Vol. 20, No. 5, pp. 569-574, Jan. 2009.   DOI
11 H. Liu, C. Lee, T. Kobayashi, C. J. Tay, and C. Quan, Investigation of a MEMS piezoelectric energy harvester system with a frequency-widened-bandwidth mechanism introduced by mechanical stoppers, Smart Mater. Struct., Vol. 21, No. 3, pp. 035005, Feb. 2012.   DOI
12 X. Tang and L. Zuo, Enhanced vibration energy harvesting using dual-mass systems, J. Sound Vib., Vol. 330, No. 21, pp. 5199-5209, Jun. 2011.   DOI
13 Q. Ou, X. Chen, S. Gustschmidt, A. Wood, N. Leigh, and A. F. Arrieta, An experimentally validated double-mass piezoelectric cantilever model for broadband vibration-based energy harvesting, J. Intell. Mater. Syst. Struct., Vol. 23, No. 2, pp. 117-126, Jan. 2012.   DOI
14 H. Wu, L. Tang, Y. Yang, and C. K. Soh, A novel two-degrees-of-freedom piezoelectric energy harvester, J. Intell. Mater. Syst. Struct., Vol. 24, No. 3, pp. 357–368, Jan. 2013.   DOI
15 O. Aldraihem and A. Baz, Energy harvester with a dynamic magnifier, J. Intell. Mater. Syst. Struct., Vol. 22, No. 6, pp. 521-530, May. 2011.   DOI
16 W. Zhou, G. R. Penamalli, and L. Zou, An efficient vibration energy harvester with a multi-mode dynamic magnifier, Smart Mater. Struct., Vol. 21, No. 1, pp. 015014, Jan. 2012.   DOI
17 A. Aladwani, M. Arafa, O. Aldraihem, and A. Baz, Cantilevered piezoelectric energy harvester with a dynamic magnifier, J. Vib. Acoust., Vol. 134, No. 3, pp. 031004, Apr. 2012.   DOI
18 M. A. Halim and J. Y. Park, Theoretical modeling and analysis of mechanical impact driven and frequency up-converted piezoelectric energy harvester for low-frequency and wide-bandwidth operation, Sens. Actuators A, Vol. 208, pp. 56-65, Jan. 2014.   DOI
19 O. Zorlu, E. T. Topal, H. and Kulah, A vibration-based electromagnetic energy harvester using mechanical frequency up-conversion method, IEEE Sens. J., Vol. 11, No. 2, pp. 481-488, Feb. 2011.   DOI
20 H. Liu, C. Lee, T. Kobayashi, C. J. Tay, and C. Quan, Piezoelectric MEMS-based wideband energy harvesting systems using a frequency-up-conversion cantilever stopper, Sens. Actuators A, Vol. 186, pp. 242-248, Feb. 2012.   DOI
21 I. Sari, T. Balkan, and H. Kulah, An electromagnetic micro power generator for low-frequency environmental vibrations based on the frequency up conversion technique, J. Microelectromech. Syst., Vol. 19, No. 1, pp. 14-27, Feb. 2010.   DOI
22 Q. C. Tang, Y. L. Yang, and X. Li, Bi-stable frequency up-conversion piezoelectric energy harvester driven by non-contact magnetic repulsion, Smart Mater. Struct., Vol. 20, No. 12, pp. 125011, Nov. 2011.   DOI
23 P. Pillatsch, E. M. Yeatman, and A. S. Holmes, A piezoelectric frequency up-converting energy harvester with rotating proof mass for human body applications, Sens. Actuators A, Vol. 206, No. 1, pp. 178-185, Feb. 2014.   DOI
24 M. A. Halim and J. Y. Park, Performance enhancement of a low frequency vibration driven 2-DOF piezoelectric energy harvester by mechanical impact, in Proc. PowerMEMS, 2014.
25 S. W. Shaw and P. J. Holmes, A periodically forced piecewise linear oscillator, J. Sound Vib., Vol. 90, No. 1, pp. 129-155, Sep. 1983.   DOI
26 L. Gu, Low frequency piezoelectric energy harvesting prototype suitable for the MEMS implementation, Microelectr. J., Vol. 42, No. 2, pp. 277-282, Feb. 2011.   DOI
27 S. W. Shaw, Forced vibrations of a beam with one-sided amplitude constraint: Theory and experiment, J. Sound Vib., Vol. 99, No. 2, pp. 199-212, Mar. 1985.   DOI
28 L. Tang and Y. Yang, A multiple-degree-of-freedom piezoelectric energy harvesting model, J. Intell. Mater. Syst. Struct., Vol. 23, No. 4, pp. 1631-1647, Jun. 2012.   DOI
29 C. Lalanne, Mechanical Vibration and Shock Analysis-volume 2, John Wiley & Sons, pp. 51-94, Jan. 2010.
30 S. Adhikari, M. I. Friswell, and D. J. Inman, Piezoelectric energy harvesting from broadband random vibrations, Smart Mater. Struct., Vol. 18, No. 11, pp. 115005, Sep. 2011.   DOI