• Title/Summary/Keyword: 3-Dimensional module

Search Result 213, Processing Time 0.025 seconds

A Study on Accurate Alignment Measurement of Dual Thruster Module Using Theodolite (데오드라이트를 이용한 이중 추력기 모듈의 정밀정렬측정에 관한 연구)

  • Hwang, Kwon-Tae;Moon, Guee-Won;Cho, Chang-Lae;Lee, Dong-Woo;Lee, Sang-Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.11
    • /
    • pp.1399-1404
    • /
    • 2012
  • Because satellites operate in space, it is impossible to repair them when they malfunction. Therefore, to ensure the normal function of the payload used in the satellites, accurate assembly and installation of parts are crucial. To prevent abnormal functioning in the extreme environments during launch and in space, it is essential to test changes at the parts and system levels by performing alignment measurement before and after the launch environment test and the space environment test. Recently, noncontact three-dimensional precision machinery for medium- and large-sized parts has been developed. One of these is the theodolite measurement system, which is widely used in the aerospace industry. This study measures the angle of the dual thruster module that is used to control the attitude of KOMPSAT by using a theodolite, and alignment measurement and a reliability analysis are performed.

Framework Development for Fault Prediction in Hot Rolling Mill System (열간 압연 설비의 고장 예지를 위한 프레임워크 구축)

  • Son, J.D.;Yang, B.S.;Park, S.H.
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.21 no.3
    • /
    • pp.199-205
    • /
    • 2011
  • This paper proposes a framework to predict the mechanical fault of hot rolling mill system (HRMS). The optimum process of HRMS is usually identified by the rotating velocity of working roll. Therefore, observing the velocity of working roll is relevant to early know the HRMS condition. In this paper, we propose the framework which consists of two methods namely spectrum matrix which related to case-based fast Fourier transform(FFT) analysis, and three dimensional condition monitoring based on novel visualization. Validation of the proposed method has been conducted using vibration data acquired from HRMS by accelerometer sensors. The acquired data was also tested by developed software referred as hot rolling mill facility analysis module. The result is plausible and promising, and the developed software will be enhanced to be capable in prediction of remaining useful life of HRMS.

A Chaff Simulator for an Aircraft (항공기용 채프 운용 시뮬레이터의 구현)

  • Chae, Gyoo-Soo;Lim, Joong-Soo;Kim, Min-Nyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.9 no.4
    • /
    • pp.986-991
    • /
    • 2008
  • This paper presents a simulator developed for effective use of chaff which is widely employing for aircraft protection. We calculate the scattered electric field based on the aircraft and the chaff RCS. Input parameters calculated using Matlab are forwarded to the input module of the presented simulator which provides a three dimensional display fur the three different scenarios.

Improvement of the Accuracy in Cornering Cut Using End Mill (엔드밀의 코너 가공시 가공 정밀도 향상에 관한 연구)

  • Kim, Yong-Hyeon;Go, Seong-Rim
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.3
    • /
    • pp.399-407
    • /
    • 2001
  • The Surface, generated by end milling operation, is deteriorated by tool runout, vibration, friction, tool deflection, etc. Especially in cornering cut, surface accuracy is usually determined by varying cutting forces, which causes tool deflections. Cutting conditions like feed rate is usually kept constant during machining a part, which causes dimensional error in severe cutting. Cornering cut is a typical example of deterioration of surface accuracy when constant feed rate is applied. Therefore it becomes important to develop NC post processor module to determine optimal cutting conditions in various cutting situations. In this paper, cutting force is predicted in cornering cut with flat end mill and feed rate is determined by constraining constantly resultant force. Also some control characteristics of CNC machining center are evaluated.

Three-Dimensional Conjugate Heat Transfer Analysis for Infrared Target Modeling (적외선 표적 모델링을 위한 3차원 복합 열해석 기법 연구)

  • Jang, Hyunsung;Ha, Namkoo;Lee, Seungha;Choi, Taekyu;Kim, Minah
    • Journal of KIISE
    • /
    • v.44 no.4
    • /
    • pp.411-416
    • /
    • 2017
  • The spectral radiance received by an infrared (IR) sensor is mainly influenced by the surface temperature of the target itself. Therefore, the precise temperature prediction is important for generating an IR target image. In this paper, we implement the combined three-dimensional surface temperature prediction module against target attitudes, environments and properties of a material for generating a realistic IR signal. In order to verify the calculated surface temperature, we are using the well-known IR signature analysis software, OKTAL-SE and compare the result with that. In addition, IR signal modeling is performed using the result of the surface temperature through coupling with OKTAL-SE.

A PC Operated Off-Line Programming System for SCARA Robots (PC에서 운용되는 스카라형 로보트의 오프-라인 프로그래밍 시스템)

  • Park, Min-Jo;Son, Kwon;Ahn, Doo-Sung
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.2
    • /
    • pp.568-579
    • /
    • 1995
  • An off-line programming (OLP) system was proposed and developed in order to save cost and time in adjusting a robot to new workcells or applying new algorithms to actual trajectory planning. The developed OLP system was especially designed to be operated in a PC level host computer. A SCARA robot with four axes was selected as an objective robot. The OLP system developed in this study consisted of such modules as data base, three-dimensional graphics, kinematics, trajectory planning, dynamics, control, and commands. Each module was constructed to form an independent unit so that it can be easily modified or improved. The OLP system was programmed for a graphic user interface in Borland $C^{++}$ language. Some of system operating commands and an interpreter were devised and used for more convenient programming of robot simulations.s.

Modelling of multidimensional effects in thermal-hydraulic system codes under asymmetric flow conditions - Simulation of ROCOM tests 1.1 and 2.1 with ATHLET 3D-Module

  • Pescador, E. Diaz;Schafer, F.;Kliem, S.
    • Nuclear Engineering and Technology
    • /
    • v.53 no.10
    • /
    • pp.3182-3195
    • /
    • 2021
  • The implementation and validation of multi-dimensional (multi-D) features in thermal-hydraulic system codes aims to extend the application of these codes towards multi-scale simulations. The main goal is the simulation of large-scale three-dimensional effects inside large volumes such as piping or vessel. This novel approach becomes especially relevant during the simulation of accidents with strongly asymmetric flow conditions entailing density gradients. Under such conditions, coolant mixing is a key phenomenon on the eventual variation of the coolant temperature and/or boron concentration at the core inlet and on the extent of a local re-criticality based on the reactivity feedback effects. This approach presents several advantages compared to CFD calculations, mainly concerning the model size and computational efforts. However, the range of applicability and accuracy of the newly implemented physical models at this point is still limited and needs to be further extended. This paper aims at contributing to the validation of the multi-D features of the system code ATHLET based on the simulation of the Tests 1.1 and 2.1, conducted at the test facility ROCOM. Overall, the multi-D features of ATHLET predict reasonably well the evolution from both experiments, despite an observed overprediction of coolant mixing at the vessel during both experiments.

A Dynamic Three Dimensional Neuro System with Multi-Discriminator (다중 판별자를 가지는 동적 삼차원 뉴로 시스템)

  • Kim, Seong-Jin;Lee, Dong-Hyung;Lee, Soo-Dong
    • Journal of KIISE:Software and Applications
    • /
    • v.34 no.7
    • /
    • pp.585-594
    • /
    • 2007
  • The back propagation algorithm took a long time to learn the input patterns and was difficult to train the additional or repeated learning patterns. So Aleksander proposed the binary neural network which could overcome the disadvantages of BP Network. But it had the limitation of repeated learning and was impossible to extract a generalized pattern. In this paper, we proposed a dynamic 3 dimensional Neuro System which was consisted of a learning network which was based on weightless neural network and a feedback module which could accumulate the characteristic. The proposed system was enable to train additional and repeated patterns. Also it could be produced a generalized pattern by putting a proper threshold into each learning-net's discriminator which was resulted from learning procedures. And then we reused the generalized pattern to elevate the recognition rate. In the last processing step to decide right category, we used maximum response detector. We experimented using the MNIST database of NIST and got 99.3% of right recognition rate for training data.

Reusable HEVC Design in 3D-HEVC

  • Heo, Young Su;Bang, Gun;Park, Gwang Hoon
    • ETRI Journal
    • /
    • v.38 no.5
    • /
    • pp.818-828
    • /
    • 2016
  • This paper proposes a reusable design for the merging process used in three-dimensional High Efficiency Video Coding (3D-HEVC), which can significantly reduce the implementation complexity by eliminating duplicated module redundancies. The majority of inter-prediction coding tools used in 3D-HEVC are utilized through a merge mode, whose extended merging process is based on built-in integration to completely wrap around the HEVC merging process. Consequently, the implementation complexity is unavoidably very high. To facilitate easy market implementation, the design of a legacy codec should be reused in an extended codec if possible. The proposed 3D-HEVC merging process is divided into the base merging process of reusing HEVC modules and reprocessing process of refining the existing processes that have been newly introduced or modified for 3D-HEVC. To create a reusable design, the causal and mutual dependencies between the newly added modules for 3D-HEVC and the reused HEVC modules are eliminated, and the ineffective methods are simplified. In an application of the proposed reusable design, the duplicated reimplementation of HEVC modules, which account for 50.7% of the 3D-HEVC merging process, can be eliminated while maintaining the same coding efficiency. The proposed method has been adopted as a normative coding tool in the 3D-HEVC international standard.

Atomistic simulation of surface passivated wurtzite nanowires: electronic bandstructure and optical emission

  • Chimalgi, Vinay U.;Nishat, Md Rezaul Karim;Yalavarthi, Krishna K.;Ahmed, Shaikh S.
    • Advances in nano research
    • /
    • v.2 no.3
    • /
    • pp.157-172
    • /
    • 2014
  • The three-dimensional Nano-Electronic Modeling toolkit (NEMO 3-D) is an open source software package that allows the atomistic calculation of single-particle electronic states and optical response of various semiconductor structures including bulk materials, quantum dots, impurities, quantum wires, quantum wells and nanocrystals containing millions of atoms. This paper, first, describes a software module introduced in the NEMO 3-D toolkit for the calculation of electronic bandstructure and interband optical transitions in nanowires having wurtzite crystal symmetry. The energetics (Hamiltonian) of the quantum system under study is described via the tight-binding (TB) formalism (including $sp^3$, $sp^3s^*$ and $sp^3d^5s^*$ models as appropriate). Emphasis has been given in the treatment of surface atoms that, if left unpassivated, can lead to the creation of energy states within the bandgap of the sample. Furthermore, the developed software has been validated via the calculation of: a) modulation of the energy bandgap and the effective masses in [0001] oriented wurtzite nanowires as compared to the experimentally reported values in bulk structures, and b) the localization of wavefunctions and the optical anisotropy in GaN/AlN disk-in-wire nanowires.