• Title/Summary/Keyword: 3-Dimensional Resolution

Search Result 537, Processing Time 0.025 seconds

Characterization of three-dimensional ultrasonic anemometer using phase measurement (위상측정방식을 이용한 3차원 초음파 풍향풍속계의 특성분석)

  • Park, Do-Hyun;Yeh, Yun-Hae
    • Journal of Sensor Science and Technology
    • /
    • v.15 no.6
    • /
    • pp.442-448
    • /
    • 2006
  • Ultrasonic anemometers using pulse envelope detection-based method are standard instruments in most meteorological studies. In this paper, a new phase measurement method is tried to achieve the enhanced resolution without changing dimensions. The measurement sensitivity, dynamic range, and measurement speed of the new instrument are 0.2 mm/s, 13.3 m/s, and 13 measurements/sec, respectively. A graphic user interface is added to show the velocity and direction of the wind with the speed of sound and temperature of the wind in the 3 dimensional space. The new anemometer could be useful for the measurement of the air speed, the flow of fluids, and even air flow inside the downtown buildings.

Realization of 3-D Topographic and Tomograpic Images with Ultrahigh-resolution Full-field Optical Coherence Tomography

  • Choi, Woo-June;Na, Ji-Hoon;Ryu, Seon-Young;Lee, Byeong-Ha;Ko, Dong-Seob
    • Journal of the Optical Society of Korea
    • /
    • v.11 no.1
    • /
    • pp.18-25
    • /
    • 2007
  • We present an ultrahigh-resolution full-field optical coherence tomography (FF-OCT) implemented with a white-light interference microscope and a detector array as an alternative OCT technique. The use of detector array allows the capture of two-dimensional en-face images in parallel without taking any lateral scanning process. The phase shifting interferometric technique with the sinusoidal phase modulation (SPM) is utilized to get the demodulated OCT images. The configuration of the system and the resolution of the obtained image are presented. The topographic images, taken with the implemented system, of a coin, an integrated circuit chip, and the tomographic images of an onion epithelium are demonstrated also. Axial and lateral spatial resolution of ${\sim}1.0{\mu}m$ and ${\sim}2.0{\mu}m$ are achieved with the system respectively.

A Study on Feature-Based Multi-Resolution Modelling - Part I: Effective Zones of Features (특징형상기반 다중해상도 모델링에 관한 연구 - Part I: 특징형상의 유효영역)

  • Lee K.Y.;Lee S.H.
    • Korean Journal of Computational Design and Engineering
    • /
    • v.10 no.6
    • /
    • pp.432-443
    • /
    • 2005
  • Recent three-dimensional feature-based CAD systems based on solid or non-manifold modelling functionality have been widely used for product design in manufacturing companies. When product models associated with features are used in various downstream applications such as analysis, however, simplified and abstracted models at various levels of detail (LODs) are frequently more desirable and useful than the full detailed model. To provide multi-resolution models, the features need to be rearranged according to a criterion that measures the significance of the feature. However, if the features are rearranged, the resulting shape is possibly different from the original because union and subtraction Boolean operations are not commutative. To solve this problem, in this paper, the new concept of the effective zone of a feature is defined and identified using Boolean algebra. By introducing the effective zone, an arbitrary rearrangement of features becomes possible and arbitrary LOD criteria may be selected to suit various applications. Besides, because the effective zone of a feature is independent of the data structure of the model, the multi-resolution modelling algorithm based on the effective zone can be implemented on any 3D CAD system based on conventional solid representations as well as non-manifold topological (NMT) representations.

The shape measurement of three-dimensional object by using color-coded information (색정보를 이용한 3차원 형상 측정)

  • Kim J.S.;Song C.K.;Joo B.K.;HONG J.H.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1446-1449
    • /
    • 2005
  • The purpose of this study is the real-time shape measurement of three-dimensional object by using color coded information. The paper relates to non-contact optical measurements of surface profiles or displacements, because of optical measurement systems are advantageous over using mechanical sensing, their relatively high speed and non-destructive capabilities. Therefore is particularly useful for three dimensional sensing which requires high horizontal and vertical resolution of measurements over a wide range thereof. Each a red, blue, green by using a inherence colors of hue value are good point.

  • PDF

High order computation on the three dimensional wakes past a circular cylinder (고해상도수치기법에 의한 원형실린더 주위의 3차원 후류유동 특성연구)

  • Lee, Sang-Soo;Kim, Jae-Soo;Kim, Tae-Su
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.622-625
    • /
    • 2008
  • While the research for flow over a circular cylinder has been actively carried out up to the present, it has been known that the flow has not been clarified even now. Various complex flow and aero-acoustic characteristics exist around a circular cylinder such as flow separation, wake and pressure wave propagation. In this paper, research was carried out for wake flow and aeroacoustics over a circular cylinders by using high order, high resolution techniques that are used in two dimensional aero- acoustic analysis. OpenMP parallel processing method was used. For the numerical result, the periodic characteristic of Strouhal Number due to vortex shedding was comparatively analyzed with other experiment values and two dimensional numerical results.

  • PDF

True Three-Dimensional Cone-Beam Reconstruction (TTCR) Algorithm - Transform Method from Parallel-beam (TTR) Algorithm - (원추형 주사 방식의 3차원 영상 재구성(TTCR) 알고리즘 - 평행주사 방식(TTR) 알고리즘의 좌표변환 -)

  • Lee, S.Z.;Ra, J.B.;Cho, Z.H.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1989 no.05
    • /
    • pp.55-59
    • /
    • 1989
  • A true three-dimensional cone-beam reconstruction (TTCR) algorithm for the complete sphere geometry is derived, which is applicable to the direct volume image reconstruction from 2-D cone-beam projections. The algorithm is based on the modified filtered backprojection technique which uses a set of 2-D space-invariant filters and is derived from the previously developed parallel-beam true three-dimensional reconstruction(TTR) algorithm. The proposed algorithm proved to be superior in spatial resolution compared with the parallel-beam TTR algorithm.

  • PDF

Measurement of Brownian motion of nanoparticles in suspension using a network-based PTV technique

  • Banerjee A.;Choi C. K.;Kihm K. D.;Takagi T.
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2004.12a
    • /
    • pp.91-110
    • /
    • 2004
  • A comprehensive three-dimensional nano-particle tracking technique in micro- and nano-scale spatial resolution using the Total Internal Reflection Fluorescence Microscope (TIRFM) is discussed. Evanescent waves from the total internal reflection of a 488nm argon-ion laser are used to measure the hindered Brownian diffusion within few hundred nanometers of a glass-water interface. 200-nm fluorescence-coated polystyrene spheres are used as tracers to achieve three-dimensional tracking within the near-wall penetration depth. A novel ratiometric imaging technique coupled with a neural network model is used to tag and track the tracer particles. This technique allows for the determination of the relative depth wise locations of the particles. This analysis, to our knowledge is the first such three-dimensional ratiometric nano-particle tracking velocimetry technique to be applied for measuring Brownian diffusion close to the wall.

  • PDF

The Use of Hermite Cubic Element for Inviscid Convective Equations (비점성 대류 방정식의 계산을 위한 Hermite 3차 요소의 사용에 대한)

  • 김진환
    • Journal of Ocean Engineering and Technology
    • /
    • v.7 no.1
    • /
    • pp.99-106
    • /
    • 1993
  • The use of Hermite cubic element, as a possible finite element computation of transport equations containing shocks, has been invesigated. In the present paper the hermite cubic elements are applied to both linear and nonlinear scalar one and two dimensional equations. In the one dimensional problems, numerical results by the hermite cubic element show better than those by the linear element, and the steady state solution by the hermite cubic element yields result with good resolution. This fact proves the superiority of the hermite cubic element in space differencing. In two dimensional case, the results by the hermite cubic element shows a boundary instability, and the use of higher order time differencing method may be necessary for fixing the problem.

  • PDF

Application of Compressive Sensing to Two-Dimensional Radar Imaging Using a Frequency-Scanned Microstrip Leaky Wave Antenna

  • Yang, Shang-Te;Ling, Hao
    • Journal of electromagnetic engineering and science
    • /
    • v.17 no.3
    • /
    • pp.113-119
    • /
    • 2017
  • The application of compressive sensing (CS) to a radar imaging system based on a frequency-scanned microstrip leaky wave antenna is investigated. First, an analytical model of the system matrix is formulated as the basis for the inversion algorithm. Then, $L_1-norm$ minimization is applied to the inverse problem to generate a range-azimuth image of the scene. Because of the antenna length, the near-field effect is considered in the CS formulation to properly image close-in targets. The resolving capability of the combined frequency-scanned antenna and CS processing is examined and compared to results based on the short-time Fourier transform and the pseudo-inverse. Both simulation and measurement data are tested to show the system performance in terms of image resolution.

Basic principle of cone beam computed tomography (Cone beam형 전산화단층영상의 원리)

  • Choi Yong-Suk;Kim Gyu-Tae;Hwang Eui-Hwan
    • Imaging Science in Dentistry
    • /
    • v.36 no.3
    • /
    • pp.123-129
    • /
    • 2006
  • The use of computed tomography for dental procedures has increased recently. Cone beam computed tomography (CBCT) systems have been designed for imaging hard tissues of the dentomaxillofacial region. CBCT is capable of providing high resolution in images of high diagnostic quality. This technology allows for 3-dimensional representation of the dentomaxillofacial skeleton with minimal distortion, but at lower equipment cost, simpler image acquisition and lower patient dose. Because this technology produces images with isotropic sub-millimeter spatial resolution, it is ideally suited for dedicated dentomaxillofacial imaging. In this paper, we provide a brief overview of cone beam scanning technology and compare it with the fan beam scanning used in conventional CT and the basic principles of currently available CBCT systems.

  • PDF