• 제목/요약/키워드: 3-Dimensional Measurement

검색결과 1,256건 처리시간 0.035초

CORRELATION STUDY OF THE MEASURED TUMBLE RATIOS USING THREE DIFFERENT METHODS: STEADY FLOW RIG; 2-DIMENSIONAL PIV; AND 3-DIMENSIONAL PTV WATER FLOW RIG

  • Kim, M.J.;Lee, S.H.;Kim, W.T.
    • International Journal of Automotive Technology
    • /
    • 제7권4호
    • /
    • pp.441-448
    • /
    • 2006
  • In-cylinder flows such as tumble and swirl play an important role on the engine combustion efficiencies and emission formations. The tumble flow, which is dominant in current high performance gasoline engines, is able to effect fuel consumptions and emissions under a partial load condition in addition to the volumetric efficiency under a wide open throttle condition. Therefore, it is important to optimize the tumble ratio of a gasoline engine for better fuel economy, lower emissions, and maximum volumetric efficiency. First step for optimizing a tumble ratio is to measure a tumble ratio accurately. For a tumble ratio measurement, many different methods have been developed and used such as steady flow rig, PIV, PTV, and LDV. However, it is not well known about the relations among the measured tumble ratios using different methods. The purpose of this research is to correlate the tumble ratios measured using three different methods and find out merits and demerits of each measurement method. In this research the tumble flow was measured, compared, and correlated using three different measurement methods at the same engine: steady flow rig; 2-dimensional PIV; and 3-dimensional PTV water flow rig.

광위상간섭에 의한 경면의 정밀 형상측정 (Precision Profile Measurement of Mirror Surfaces by Phase Shifting Interferometry)

  • 김승우;공인복;민선규
    • 대한기계학회논문집
    • /
    • 제16권8호
    • /
    • pp.1530-1535
    • /
    • 1992
  • 본 연구에서는 초정밀 경면의 표면형상을 비접촉식으로 측정하기 위한 광위상 간섭법(phase shifting interferometry)에 관한 연구결과를 기술하였다. 리닉(lin- nik) 광학계를 이용한 광위상간섭에 대한 기본 측정원리를 정립하고 표면측정을 위한 간섭무늬처리 영상해석 알고리즘을 개발하였다. 그리고 실제적인 경면의 측정을 통 하여 개발한 광학계 및 측정 알고리즘의 타당성을 검증하였다.

위상 이동 그림자 무아레 방법을 이용한 3차원 형상의 측정 (Measurement of three dimensional shapes using phase-shifting shadow moire method)

  • 강영준
    • 한국생산제조학회지
    • /
    • 제6권4호
    • /
    • pp.39-45
    • /
    • 1997
  • Shadow moire topography has been used as a noncontact method for measuring the 3-D shapes of objects. The moire fringes are results from the superposition of a master grating and its shadow projected on the surface of an object. But in case of the classical shadow moire method, in general, the resolution is a few tenths of millimeter. It is difficult to use a phase -shifting method in shadow moire because it is impossible to obtain uniform phase shifts on the whole field. But in this study , We introduce a phase-shifting method to improve the resolution of the classical shadow moire method. This method is based on the fact that if the depth of object is much less than the distance between the observer and the master grating, the phase shifts are almost uniform on the whole field area. Finally, we applied this new phase-shifting method to the measurement of the 3-D shape of a coin.

  • PDF

영상처리기술에 의한 사용후핵연료 집합체의 제원 측정 (Dimensional Measurement of Spent Fuel Assemblies Using Image Processing Technique)

  • 구대서;박성원
    • 비파괴검사학회지
    • /
    • 제22권1호
    • /
    • pp.9-13
    • /
    • 2002
  • 수중에서 사용후 핵연료 제원측정 시험의 효율성을 높이고 측정오차를 줄이기 위하여 수중 영상측정방법을 개발하였다. 이 시스템의 모의 핵연료봉 직경 및 길이 측정치는 실제값 기준으로 할 때, 각각 $-0.24{\pm}0.03mm,\;0.34{\pm}0.06mm$이고 측정 최대오차는 각각 -0.3mm 및 0.4mm이내였다. 실제 사용후핵연료에 대한 수중 제원측정결과 고리원자력 2호기에서 2주기 동안 연소한 핵연료 집합체 J44의 핵연료봉 직경은 설계치 기준으로 할 때 핵연료봉 상 하단부 직경은 2.0%, 중앙부의 직경은 3.0% 정도 감소하였으나 핵연료봉의 길이는 0.4% 정도 신장하였다. 고리원자력 1호기에서 3주기 동안 연소한 핵연료 집합체 F02의 핵연료봉의 직경 및 길이는 핵연료 집합체 J44의 결과와 비슷한 경향을 나타내었다.

공저변형법에 의한 3차원응력측정 시스템의 개발 (Development of 3-Dimensional Stress Measurement System by Bore hole Bottom Deformation Method)

  • 이기하
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2006년도 춘계 학술발표회 논문집
    • /
    • pp.34-41
    • /
    • 2006
  • A 3-dimensional stress measurement system based on the bore hole bottom deformation method, which is one of the stress relief methods, was developed. A pilot bore hole is drilled from the bottom of a bore hole and the stress meter is inserted into the pilot bore hole in the method. The bore hole is advanced as an over coring and the deformations in seven directions are measured by cantilever type-sensors. Using the cantilever type-sensors saves time for hardening of glue. No cable connection between the stress meter and a data logger is necessary since a compact data logger is installed in the stress meter. The accuracy of the stress meter was confirmed by a biaxial test for a Shikotsu welded tuff block although in-situ tests have not been carried out yet.

  • PDF

PIV 측정을 통한 자동차 후류 3차원 와구조의 정량적 해석 (On the Visualization of Three-Dimensional Vortical Structures in the Wake behind a Road Vehicle by PIV Measurements)

  • 이석종;성재용;김진석;김성초;김정수;최종욱
    • 한국가시화정보학회:학술대회논문집
    • /
    • 한국가시화정보학회 2005년도 추계학술대회 논문집
    • /
    • pp.58-63
    • /
    • 2005
  • Three-dimensional vortical structures in the wake behind a road vehicle has been visualized with the help of two-dimensional PIV measurement data. A three-dimensional velocity field has been reconstructed from several sectional measurement data in the x-y, y-z and z-x planes. Isovorticity surface observed by stacking only the sectional data in each plane, does not show the vortical structures within the recirculation region but represents only the strong shear flows. Thus, in the present study, the velocity component normal to the x-y plane is obtained by interpolating those velocities in the z-x plane. Then, a $\lambda_{2}$-definition which captures the local pressure minimum or vortex core, is applied to visualize the vortices in the recirculation region. The final results represent a successful configuration for the three-dimensional vortices.

  • PDF

장갑의 적합성 향상을 위한 손부의 2차원 및 3차원 계측정보 DB구축에 관한 연구 -손의 유형분석 및 3차원 입체형상 분석을 중심으로- (The Database Development of 2-D and 3-D Hands Measurement for Improving Fitness of Gloves - Focused on the Classification of Hand Type and Analysis of 3-D Hand Shape -)

  • 최혜선;김은경
    • 한국의류학회지
    • /
    • 제28권9_10호
    • /
    • pp.1300-1311
    • /
    • 2004
  • The aim of this study was to provide the 2 and 3 dimensional statistics requisite in the sizing system and design of gloves. The 64 2-dimensional static measurements were selected to provide information about hands. Participants in the study were 824 adults, aged between 18 and 64. To summarize the information from the measurement values, a Factor Analysis and a Cluster Analysis among multivariate analyses were performed. 3-D scanner was used for visual results of hand shape of each cluster. The results were as follows. Twenty-two items were used for the factor and cluster analysis in order to classify the adult hand shape. The variable quantities that are explained by a total of 3 factors amounted to under 79.37% of the variable quantities. The definition results of the factors related to the hands are as follows: Factor 1 is the horizontal dimension, the thickness of hand factor; Factor 2 is the height of the crotch; and Factor 3 is the vertical dimension of the hand. The adults' group hand was divided into 2 clusters according to a cluster analysis using factor scores. The characteristics according to hand type were as follows: Cluster 1 referred to high horizontal dimensions and thickness, rather small vertical dimensions and crotch height; and Cluster 2 represented the rather smaller horizontal dimensions and thickness but longer hand length than Type 1. To provide specific shape data of each cluster, 3-D scanner measurement was performed. 3-dimensional data base was developed for each cluster type and visual information was provided.

선형배율보정을 통한 DFF 기반의 삼차원 형상 측정법 (A Measurement Method of Three-Dimensional Surface Morphology Based on Depth-from-Focus through Linear Magnification Calibration)

  • 김경범;신영수
    • 한국정밀공학회지
    • /
    • 제22권9호
    • /
    • pp.115-122
    • /
    • 2005
  • Errors resulting from magnification variations of a optical system are largely generated in three-dimensional shape measurements based on depth-from-focus. In the case of measuring the surface morphology of tiny objects based on DFF, images are acquired with a very small interval so that magnification changes can be minimized. However, the magnification variations are actually existed in the acquired images and so focus measures are wrongly or ambiguously extracted. In this paper, a methodology with linear magnification calibrations, based on DFF, is proposed to make more accurate measurement in surface morphology with high depth discontinuity, compared with previous ones. Several experiments show that the proposed method outperforms existing ones without magnification calibrations.

케이블센서를 이용한 2차원 위치측정 시스템 (A Two-Dimensional Position Sensor Using Cable Extension Transducers)

  • 홍대희
    • 한국정밀공학회지
    • /
    • 제16권9호
    • /
    • pp.159-165
    • /
    • 1999
  • Based on the cable-extension transducers, a new technique for two dimensional position measurement is developed in this paper. This new technique includes the use of two such transducers and the planar position is determined through triangulation. This paper also presents uncertainty analysis results for establishing sensor design specifications. An actual prototyped sensor system is built and its accuracy is verified through h\both experiments with coordinate measurement machines and its application to the real-time control of a high load wheeled mobile robot. This new type of position sensor can be easily used in a wide variety of automation applications in industry for two dimensional position measurements with high accuracy over a relatively large range, and it is both cast effective and robust against hostile environments.

  • PDF