• 제목/요약/키워드: 3-Dimension algorithm

검색결과 191건 처리시간 0.03초

SNS대상의 지능형 자연어 수집, 처리 시스템 구현을 통한 한국형 감성사전 구축에 관한 연구 (Research on Designing Korean Emotional Dictionary using Intelligent Natural Language Crawling System in SNS)

  • 이종화
    • 한국정보시스템학회지:정보시스템연구
    • /
    • 제29권3호
    • /
    • pp.237-251
    • /
    • 2020
  • Purpose The research was studied the hierarchical Hangul emotion index by organizing all the emotions which SNS users are thinking. As a preliminary study by the researcher, the English-based Plutchick (1980)'s emotional standard was reinterpreted in Korean, and a hashtag with implicit meaning on SNS was studied. To build a multidimensional emotion dictionary and classify three-dimensional emotions, an emotion seed was selected for the composition of seven emotion sets, and an emotion word dictionary was constructed by collecting SNS hashtags derived from each emotion seed. We also want to explore the priority of each Hangul emotion index. Design/methodology/approach In the process of transforming the matrix through the vector process of words constituting the sentence, weights were extracted using TF-IDF (Term Frequency Inverse Document Frequency), and the dimension reduction technique of the matrix in the emotion set was NMF (Nonnegative Matrix Factorization) algorithm. The emotional dimension was solved by using the characteristic value of the emotional word. The cosine distance algorithm was used to measure the distance between vectors by measuring the similarity of emotion words in the emotion set. Findings Customer needs analysis is a force to read changes in emotions, and Korean emotion word research is the customer's needs. In addition, the ranking of the emotion words within the emotion set will be a special criterion for reading the depth of the emotion. The sentiment index study of this research believes that by providing companies with effective information for emotional marketing, new business opportunities will be expanded and valued. In addition, if the emotion dictionary is eventually connected to the emotional DNA of the product, it will be possible to define the "emotional DNA", which is a set of emotions that the product should have.

불균형 자세 예방용 IMU 내장 넥밴드를 이용한 앉은 자세 분류 (Classification of Sitting Position by IMU Built in Neckband for Preventing Imbalance Posture)

  • 마상용;심현민;이상민
    • 재활복지공학회논문지
    • /
    • 제9권4호
    • /
    • pp.285-291
    • /
    • 2015
  • 본 논문에서는 IMU(inertial measurement unit)의 데이터를 이용하여 사람의 앉은 자세를 분류하는 알고리즘을 제안한다. 제안하는 알고리즘은 IMU의 데이터를 주성분 분석법(principle component analysis: PCA)을 이용하여 특징 벡터를 3개로 축소시켰고, RBF(radial basis function) 커널을 적용한 서포트 벡터 머신(support vector machine: SVM)을 이용하여 자세를 분류하였다. 데이터의 측정을 위하여 건강한 성인 3명을 대상으로 실험을 실시하였고, 데이터의 수집을 위하여 넥밴드 형태의 이어폰에 IMU를 내장한 장치를 개발하여 착용하였다. 피험자는 각각 neutral position, smartphoning, writing의 세 가지 앉은 자세에 대하여 실험을 진행하였다. 실험 결과 제안하는 PCA-SVM 알고리즘은 특징 벡터의 차원을 25%로 축소시키면서도 95%의 신뢰를 보였다.

  • PDF

An Improved EEG Signal Classification Using Neural Network with the Consequence of ICA and STFT

  • Sivasankari, K.;Thanushkodi, K.
    • Journal of Electrical Engineering and Technology
    • /
    • 제9권3호
    • /
    • pp.1060-1071
    • /
    • 2014
  • Signals of the Electroencephalogram (EEG) can reflect the electrical background activity of the brain generated by the cerebral cortex nerve cells. This has been the mostly utilized signal, which helps in effective analysis of brain functions by supervised learning methods. In this paper, an approach for improving the accuracy of EEG signal classification is presented to detect epileptic seizures. Moreover, Independent Component Analysis (ICA) is incorporated as a preprocessing step and Short Time Fourier Transform (STFT) is used for denoising the signal adequately. Feature extraction of EEG signals is accomplished on the basis of three parameters namely, Standard Deviation, Correlation Dimension and Lyapunov Exponents. The Artificial Neural Network (ANN) is trained by incorporating Levenberg-Marquardt(LM) training algorithm into the backpropagation algorithm that results in high classification accuracy. Experimental results reveal that the methodology will improve the clinical service of the EEG recording and also provide better decision making in epileptic seizure detection than the existing techniques. The proposed EEG signal classification using feed forward Backpropagation Neural Network performs better than to the EEG signal classification using Adaptive Neuro Fuzzy Inference System (ANFIS) classifier in terms of accuracy, sensitivity, and specificity.

Structural damage identification of truss structures using self-controlled multi-stage particle swarm optimization

  • Das, Subhajit;Dhang, Nirjhar
    • Smart Structures and Systems
    • /
    • 제25권3호
    • /
    • pp.345-368
    • /
    • 2020
  • The present work proposes a self-controlled multi-stage optimization method for damage identification of structures utilizing standard particle swarm optimization (PSO) algorithm. Damage identification problem is formulated as an inverse optimization problem where damage severity in each element of the structure is considered as optimization variables. An efficient objective function is formed using the first few frequencies and mode shapes of the structure. This objective function is minimized by a self-controlled multi-stage strategy to identify and quantify the damage extent of the structural members. In the first stage, standard PSO is utilized to get an initial solution to the problem. Subsequently, the algorithm identifies the most damage-prone elements of the structure using an adaptable threshold value of damage severity. These identified elements are included in the search space of the standard PSO at the next stage. Thus, the algorithm reduces the dimension of the search space and subsequently increases the accuracy of damage prediction with a considerable reduction in computational cost. The efficiency of the proposed method is investigated and compared with available results through three numerical examples considering both with and without noise. The obtained results demonstrate the accuracy of the present method can accurately estimate the location and severity of multi-damage cases in the structural systems with less computational cost.

ON PAIRWISE GAUSSIAN BASES AND LLL ALGORITHM FOR THREE DIMENSIONAL LATTICES

  • Kim, Kitae;Lee, Hyang-Sook;Lim, Seongan;Park, Jeongeun;Yie, Ikkwon
    • 대한수학회지
    • /
    • 제59권6호
    • /
    • pp.1047-1065
    • /
    • 2022
  • For two dimensional lattices, a Gaussian basis achieves all two successive minima. For dimension larger than two, constructing a pairwise Gaussian basis is useful to compute short vectors of the lattice. For three dimensional lattices, Semaev showed that one can convert a pairwise Gaussian basis to a basis achieving all three successive minima by one simple reduction. A pairwise Gaussian basis can be obtained from a given basis by executing Gauss algorithm for each pair of basis vectors repeatedly until it returns a pairwise Gaussian basis. In this article, we prove a necessary and sufficient condition for a pairwise Gaussian basis to achieve the first k successive minima for three dimensional lattices for each k ∈ {1, 2, 3} by modifying Semaev's condition. Our condition directly checks whether a pairwise Gaussian basis contains the first k shortest independent vectors for three dimensional lattices. LLL is the most basic lattice basis reduction algorithm and we study how to use LLL to compute a pairwise Gaussian basis. For δ ≥ 0.9, we prove that LLL(δ) with an additional simple reduction turns any basis for a three dimensional lattice into a pairwise SV-reduced basis. By using this, we convert an LLL reduced basis to a pairwise Gaussian basis in a few simple reductions. Our result suggests that the LLL algorithm is quite effective to compute a basis with all three successive minima for three dimensional lattices.

표본 적응 프러덕트 양자화와 설계 알고리즘 (Sample-Adaptive Product Quantization and Design Algorithm)

  • 김동식;박섭형
    • 한국통신학회논문지
    • /
    • 제24권12B호
    • /
    • pp.2391-2400
    • /
    • 1999
  • 벡터 양자화(vector quantizer:VQ)는 낮은 전송률을 가지는 데이터 압축에 효과적인 방법이나, 가장 큰 단점은 부호화 복잡도로 벡터의 차수와 전송률이 증가함에 따라 기하 급수적으로 증가하게 된다. VQ의 부호화 복잡도 문제를 해결하기 위하여 여러 변형된 VQ 기법이 제안되었어도 전송률이 높은 경우에는 높은 부호화 복잡도와 방대한 양의 부호책 및 훈련 열로 인하여 구현이 거의 불가능하다. 본 논문에서는 특별히 높은 전송률에서, 스칼라 양자기의 구조를 가지며 VQ의 성능을 얻을 수 있는 양자화 기법을 제안하였다. 이 기법은 feed-forward 적응 양자기의 형태를 가지고 있는데, 비교적 짧은 적응 주기를 가지고 있다. 따라서 제안한 양자화 기법을 표본 적응 프로덕트 양자기(sample-adaptive product quantizer: SAPQ)로 부르기로 한다. 그러나 제안된 SAPQ는 m차원의 공간에서 구조적 제한을 가지는 m차원 VQ의 일종으로, 비록 입력 신호가 독립이라고 할지라도 입력 분포에 따라 큰 이득을 얻을 수 있다. 제한한 SAPQ의 성능은 입력 분포에 따라서 Lloyd-Max 양자기에 비하여 약 2∼3dB의 이득을 얻었다.

  • PDF

자동차 프런트 샤시 모듈 측정을 위한 머신 비전 시스템 개발 (Development of the Machine Vision System for Inspection the Front-Chassis Module of an Automobile)

  • 이동목;이광일;양승한
    • 한국공작기계학회논문집
    • /
    • 제13권3호
    • /
    • pp.84-90
    • /
    • 2004
  • Today, automobile world market is highly competitive. In order to strengthen the competitiveness, quality of automobile is recognized as important and efforts are being made to improve the quality of manufactured components. The directional ability of automobile has influence on driver directly and hence it must be solved on the preferential basis. In the present research, an automated vision system has been developed to inspect the front chassis module. To interpret the inspection data obtained for front chassis module, new interpreting algorithm have been developed. Previously the control of tolerance of front chassis module was done manually. With the help of the new algorithm developed, the dimension is calculated automatically to check whether the front chassis module is within the tolerance limit or not.

그리드 컴퓨팅을 이용한 기계-부품 그룹 형성 (Machine-Part Grouping Formation Using Grid Computing)

  • 이종섭;강맹규
    • 대한산업공학회지
    • /
    • 제30권3호
    • /
    • pp.175-180
    • /
    • 2004
  • The machine-part group formation is to group the sets of parts having similar processing requirements into part families, and the sets of machines needed to process a particular part family into machine cells using grid computing. It forms machine cells from the machine-part incidence matrix by means of Self-Organizing Maps(SOM) whose output layer is one-dimension and the number of output nodes is the twice as many as the number of input nodes in order to spread out the machine vectors. It generates machine-part group which are assigned to machine cells by means of the number of bottleneck machine with processing part. The proposed algorithm was tested on well-known machine-part grouping problems. The results of this computational study demonstrate the superiority of the proposed algorithm.

A Novel Video Image Text Detection Method

  • Zhou, Lin;Ping, Xijian;Gao, Haolin;Xu, Sen
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제6권3호
    • /
    • pp.941-953
    • /
    • 2012
  • A novel and universal method of video image text detection is proposed. A coarse-to-fine text detection method is implemented. Firstly, the spectral clustering (SC) method is adopted to coarsely detect text regions based on the stationary wavelet transform (SWT). In order to make full use of the information, multi-parameters kernel function which combining the features similarity information and spatial adjacency information is employed in the SC method. Secondly, 28 dimension classifying features are proposed and support vector machine (SVM) is implemented to classify text regions with non-text regions. Experimental results on video images show the encouraging performance of the proposed algorithm and classifying features.

형태제약을 가지는 부서의 다층빌딩 설비배치 (Multi-level Building Layout With Dimension Constraints On Departments)

  • Chae-Bogk Kim
    • 산업경영시스템학회지
    • /
    • 제26권4호
    • /
    • pp.42-49
    • /
    • 2003
  • The branch and bound techniques based on cut tree and eigenvector have been Introduced in the literature [1, 2, 3, 6, 9, 12]. These techniques are used as a basis to allocate departments to floors and then to fit departments with unchangeable dimensions into floors. Grouping algorithms to allocate departments to each floor are developed and branch and bound forms the basis of optimizing using the criteria of rectilinear distance. The proposed branch and bound technique, in theory, will provide the optimal solution on two dimensional layout. If the runs are time and/or node limited, the proposed method is a strong heuristic The technique is made further practical by the fact that the solution is constrained such that the rectangular shape dimensions length and width are fixed and a perfect fit is generated if a fit is possible. Computational results obtained by cut tree-based algorithm and eigenvector-based algorithm are shown when the number of floors are two or three and there is an elevator.