• Title/Summary/Keyword: 3-D visualization

Search Result 974, Processing Time 0.03 seconds

CONTROL OF A 3-DIMENSIONAL POSTPROCESSING SOFTWARE USING DATA GLOVES FOR IMMERSIVE ENVIRONMENT (몰입 환경을 위한 3차원 데이터 후처리 소프트웨어의 데이터 글로브에 의한 제어 구현)

  • Kim K.Y.;Kim B.S.
    • Journal of computational fluids engineering
    • /
    • v.11 no.2 s.33
    • /
    • pp.56-61
    • /
    • 2006
  • As the size and dimension of target problems in the field of computational engineering including CFD gets bigger and higher, it is needed to have more efficient and flexible data visualization environment in terms of software and hardware. Even though it is still manageable to use a mouse in controlling 3-dimensional data visualization, it would be beneficial to use 3-D input device for 3-D visualization. 'Data Glove' is one of the best 3-D input devices, because human hands are best tools for understanding 3-D space and manipulating 3-D objects. Signals coming from 'Data Glove' are analog and very sensitive to finger motions, therefore signal filtering using a digital filter is applied. This paper describes our experience and benefits of using data gloves in controlling 3-dimensional postprocessing softwares.

AUTOMATED CONSTRUCTION PLANNING AND VISUALIZATION

  • M. Kataoka
    • International conference on construction engineering and project management
    • /
    • 2007.03a
    • /
    • pp.61-68
    • /
    • 2007
  • There has been a lot of research on and release of commercial systems that enable evaluation and visualization of construction methods. These have enabled the selection of good construction plans. However, the process in which engineers build 3D geometry, formulate a schedule and eventually synchronize them is still a time-consuming process. Changing any aspect of the geometry or the schedule and re-linking them is also time-consuming. Therefore, the engineers may compromise on getting the best solution. This paper describes a technique to automate the generation of multiple sets of schedules, quantity takeoffs and 4D visualization from a single 3D model.

  • PDF

Multi-gigabyte Multimedia Collections Using Qis Visualization Spreadsheet

  • 지승현
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2004.05a
    • /
    • pp.207-214
    • /
    • 2004
  • The Qis visualizational spreadsheet environment is shown to be extremely effective in supporting the visualization of multi-gigabyte multi-dimensional data sets. The Qis has a novel framestack that is the 3-D arrangement of spreadsheet elements. It enables the visualization spreadsheet to effectively manage, rapidly organize, and compactly encapsulate multi-dimensional data sets for visualization. Using several experiments with scientific users, the Qis has been demonstrated to be a highly interactive visual browsing tool for the analysis o( multidimensional data, displaying 2-D 3-D graphics, and rendering in each frame of the spreadsheet.

  • PDF

Survey on the LIC based flow visualization (LIC 기반의 유동 가시화 기법에 대한 조사 연구)

  • Lee, Joong-Youn
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2007.11a
    • /
    • pp.530-534
    • /
    • 2007
  • Flow visualization is one of visualization techniques and it means a visual expression of vector data using 2D or 3D graphics. It aims for human to easily understand a special feature of the vector data. Flow visualization can be classified into various criterions such as visualization technique, data dimension, type of the flow, and so on. Visualization technique can be categorized into direct method, integration method and derived data based method. Data dimension can be divided into 2D, 2.5D and 3D. Type of flow data may be classified into steady and unsteady. In this paper, various LIC based flow visualization methods will be introduced which is one of representative integration based techniques. Those methods will be categorized with more detailed criterions such as dimension and type of flows.

  • PDF

Realtime Video Visualization based on 3D GIS (3차원 GIS 기반 실시간 비디오 시각화 기술)

  • Yoon, Chang-Rak;Kim, Hak-Cheol;Kim, Kyung-Ok;Hwang, Chi-Jung
    • Journal of Korea Spatial Information System Society
    • /
    • v.11 no.1
    • /
    • pp.63-70
    • /
    • 2009
  • 3D GIS(Geographic Information System) processes, analyzes and presents various real-world 3D phenomena by building 3D spatial information of real-world terrain, facilities, etc., and working with visualization technique such as VR(Virtual Reality). It can be applied to such areas as urban management system, traffic information system, environment management system, disaster management system, ocean management system, etc,. In this paper, we propose video visualization technology based on 3D geographic information to provide effectively real-time information in 3D geographic information system and also present methods for establishing 3D building information data. The proposed video visualization system can provide real-time video information based on 3D geographic information by projecting real-time video stream from network video camera onto 3D geographic objects and applying texture-mapping of video frames onto terrain, facilities, etc.. In this paper, we developed sem i-automatic DBM(Digital Building Model) building technique using both aerial im age and LiDAR data for 3D Projective Texture Mapping. 3D geographic information system currently provide static visualization information and the proposed method can replace previous static visualization information with real video information. The proposed method can be used in location-based decision-making system by providing real-time visualization information, and moreover, it can be used to provide intelligent context-aware service based on geographic information.

  • PDF

Three dimensional visualization of seafloor topography for the application of integrated navigation system (통합항법시스템에 적용하기 위한 3차원 해저지형의 시각화)

  • Bae, Mun-Ki;Shin, Hyeong-Il;Lee, Dae-Jae;Kang, Il-Kwon;Lee, Yoo-Won;Kim, Kwang-Sik
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.42 no.2
    • /
    • pp.104-110
    • /
    • 2006
  • The 3D visualization of seafloor topography(ST) was realized to discuss the effective use by the 3D visualization of ST on the integrated navigation system(INS) for fishing boat. The software was to actually display the 3D visualization of ST using triangular irregular network, helical hyperspatial codes and stereo projection. The INS for fishing boat which applied the 3D visualization of ST will be utilized for safety voyage and the effective fishing work on the fishing ground.

Comparison of the borehole and tomography data in subsidence area using 3D visualization (3D 가시화를 이용한 지반침하지역의 시추자료와 토모그래피 자료의 비교)

  • 안조범;윤왕중;김진회
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.10a
    • /
    • pp.231-236
    • /
    • 2002
  • The understanding of underground geologic structures is of great importance for the surface and subsurface constructions, prevention of natural hazards such as land-slides and subsidence, and many other areas. To get the information on the geologic conditions, many of investigations such as geologic survey, geophysical explorations, testings on the physical properties of rocks, drilling tests and logging, and groundwater surveys are usually conducted, and tremendous data are collected accordingly. In general, however, these huge amount of data are interpreted in the individual areas only. If these data are analyzed collectively, much more information on the geologic conditions can be obtained. In this study, 3D visualization of borehole logging data is attempted. Borehole logging data are obtained at the urban subsidence area. To compare the 3D logging data with other geologic and geophysical data such as resistivity tomography data, interface module was developed. The 3D visualization of logging data and the comparison with other data can be helpful for the understanding of underground geologic structures.

  • PDF

Development of 3D Visualization Program Connected with Real-time Simulator (실시간 시뮬레이터와 연계된 3차원 가시화 프로그램 개발)

  • Lee Ji-woo;Lee Myeong-soo;Seo In-yong;Hong Jin-huck;Lee Seung-Ho;Suh Jeong-Kwan
    • Proceedings of the Korea Society for Simulation Conference
    • /
    • 2005.05a
    • /
    • pp.89-92
    • /
    • 2005
  • Each 3D visualization program has its own different structure as for the purpose. This paper describes the design and development of an on-line 3D core data visualization program, $RocDis^{TM}$, for the nuclear simulator. It is possible to analyze the inside of the core status including neutron flux, relative power, moderator and fuel temperature in 3D distribution. Some of other essential information, axial flux distribution etc. could also display in 2D graphs. This program would be design, tuning and training for the simulator core model.

  • PDF

A Study on Atmospheric Environment Visualization by Integrating 3D City Model and CFD Model (3D City모델과 CFD 모델을 통합한 대기환경 시각화 연구)

  • An, Seung-Man;Lee, Ho-Yeong;Sung, Hyo-Hyun;Choi, Yeong-Jin;Woo, Jung-Hun
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.19 no.4
    • /
    • pp.13-21
    • /
    • 2011
  • The purpose of this study is enhancing CFD model by applying detailed and accurate CFD input data produced from 3D City model and integrating CFD model with 3D city model with OpenGL, 3D city aerodynamic simulation, and visualization tool. CFD_NIMR_SNU model developed by NIMR and SNU and 3D City model produced by NGII were used as input data. Wind flow and pollution diffusion simulator and viewer were developed in this study. Atmospheric environment simulation and visualization tool will save time and cost for urban climate planning and management by enhancing visual communication.

Development of 3D Visualization Technology for Meteorological Data (기상자료 3차원 가시화 기술개발 연구)

  • Seo In Bum;Joh Min Su;Yun Ja Young
    • Journal of the Korean Society of Visualization
    • /
    • v.1 no.2
    • /
    • pp.58-70
    • /
    • 2003
  • Meteorological data contains observation and numerical weather prediction model output data. The computerized analysis and visualization of meteorological data often requires very high computing capability due to the large size and complex structure of the data. Because the meteorological data is frequently formed in multi-variables, 3-dimensional and time-series form, it is very important to visualize and analyze the data in 3D spatial domain in order to get more understanding about the meteorological phenomena. In this research, we developed interactive 3-dimensional visualization techniques for visualizing meteorological data on a PC environment such as volume rendering, iso-surface rendering or stream line. The visualization techniques developed in this research are expected to be effectively used as basic technologies not only for deeper understanding and more exact prediction about meteorological environments but also for scientific and spatial data visualization research in any field from which three dimensional data comes out such as oceanography, earth science, and aeronautical engineering.

  • PDF