• Title/Summary/Keyword: 3-D shape information

Search Result 764, Processing Time 0.029 seconds

Classification of Breast Shape of Women Aged 11~15 Using 3D Body Scan Data (3D 인체 스캔 데이터를 이용한 11~15세 성장기 여성의 유방형태에 따른 유형 분류)

  • Han, Tingting;Song, Hwa Kyung;Lee, Kyu Sun
    • Fashion & Textile Research Journal
    • /
    • v.19 no.6
    • /
    • pp.786-794
    • /
    • 2017
  • The purpose of this study is to analyze and classify breast shape of women aged 11~15 using 3D body scan data. In this study, 250 women's body scans were selected from the 6th Size Korea dataset, and 30 items from each of the scan were measured using RapidForm XOR 3 program. The principal component analysis and cluster analysis were conducted using statistical program SPSS 17.0. The five principal components were identified; breast drooping and breast capacity, size from chest to under bust area, breast protrusion, breast height, and under breast angle & outer distance of breast. As the results of cluster analysis, woman's breast types were classified into four types. The breast type 1 was protrusion type (25.1%) which is considered as the breast maturity stage. The breast type 2 had the most drooped breast covering a large area (20.2%). The breast type 3 had the least prominent breast with a highest nipple point, which was considered as the early breast development stage (38.9%). The breast type 4 had the obesity of the chest and breast circumferences with the slightly prominent and the least drooped breast (15.8%). This study can provide fundamental information to develop sizing system and brassiere pattern for junior girls.

3D Face Recognition using Projection Vectors for the Area in Contour Lines (등고선 영역의 투영 벡터를 이용한 3차원 얼굴 인식)

  • 이영학;심재창;이태홍
    • Journal of Korea Multimedia Society
    • /
    • v.6 no.2
    • /
    • pp.230-239
    • /
    • 2003
  • This paper presents face recognition algorithm using projection vector reflecting local feature for the area in contour lines. The outline shape of a face has many difficulties to distinguish people because human has similar face shape. For 3 dimensional(3D) face images include depth information, we can extract different face shapes from the nose tip using some depth values for a face image. In this thesis deals with 3D face image, because the extraction of contour lines from 2 dimensional face images is hard work. After finding nose tip, we extract two areas in the contour lilies from some depth values from 3D face image which is obtained by 3D laser scanner. And we propose a method of projection vector to localize the characteristics of image and reduce the number of index data in database. Euclidean distance is used to compare of similarity between two images. Proposed algorithm can be made recognition rate of 94.3% for face shapes using depth information.

  • PDF

K-Band Low Phase Noise Push Push OSC Using Metamaterial Resonator (Metamatrial Resonator를 이용한 K-Band 저위상 잡음 Push Push OSC 설계)

  • Shim, Woo-Seok;Lee, Jong-Min;Seo, Chul-Hun
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.49 no.2
    • /
    • pp.67-71
    • /
    • 2012
  • In this paper, a push-push oscillator at K-band with a double H-shape metamaterial resonator (DHMR) based on high-Q is proposed with metamaterial structure to improve the phase noise and output power. The proposed oscillator shows low phase noise and high output power. DHMR is designed to be high-Q at resonance frequency through strong coupling of E-field. oscillators which are combined in push-push structure improve output power. The propose push-push oscillator shows the output power of 3.1 dBm, the fundamental signal suppression of -23.7 dBc and phase noise of -116.28 dBc at 100 kHz offset frequency and 20.20 GHz center frequency.

An Analysis of 3-D Object Characteristics Using Locally Linear Embedding (시점별 형상의 지역적 선형 사상을 통한 3차원 물체의 특성 분석)

  • Lee, Soo-Chahn;Yun, Il-Dong
    • Journal of Broadcast Engineering
    • /
    • v.14 no.1
    • /
    • pp.81-84
    • /
    • 2009
  • This paper explores the possibility of describing objects from the change in the shape according to the change in viewpoint. Specifically, we sample the shapes from various viewpoints of a 3-D model, and apply dimension reduction by locally linear embedding. A low dimensional distribution of points are constructed, and characteristics of the object are described from this distribution. Also, we propose two 3-D retrieval methods by applying the iterative closest point algorithm, and by applying Fourier transform and measuring similarity by modified Housdorff distance, and present experimental results. The proposed method shows that the change of shape according to the change in viewpoint can describe the characteristics of an object.

A Study on the Usefulness of Photogrammetry through 3D Recording of the Rock-carved Standing Buddha in Singyeong-ri, Hongseong (홍성 신경리 마애여래입상의 3차원 기록화를 통한 포토그래메트리의 유용성 연구)

  • Oh, Jun-Young;Kim, Choong-Sik
    • Korean Journal of Heritage: History & Science
    • /
    • v.50 no.3
    • /
    • pp.30-43
    • /
    • 2017
  • The purpose of this study is to improve the usefulness of photogrammetry in the field of cultural heritage recording concentrated on laser scanning. Two measurement methods(laser scanning, photogrammetry) were compared in terms of accuracy and reality for the Rock-carved Standing Buddha in Singyeong-ri, Hongseong. With regard to accuracy, the distances of major points by both shape information and between the two shape information were compared. Only a deviation of about 1mm was found in the distance measurement of the major points by both shape information. In particular, the average distance between two shape information identified through aligning was only about 0.01mm. Also, the absolute deviation within about 2mm accounted for 70% of the total, and the absolute deviation within about 3.5mm was found to be 95.4% of the total. These values showed very high similarity between laser scanning and photogrammetry-based shape information. In respect of reality, the carved depth, texture, and patterns were compared. As a result of comparing four cross-sectional shapes, only slight differences were found in the shape information of both measurement techniques and similar shapes were identified. The overall texture of both shape information was also similar. However, the detailed shape based on the photogrammetry with decimation is realized with a smoother texture than the original and laser scanning. In particular, Photogrammetry also realistically expressed the various ornaments carved in the Rock-carved Buddha and the patterns with shallow depths were comparatively detailed.

Design of an Asymmetric-custom-surface Imaging Optical System for Two-dimensional Temperature-field Measurement

  • Guanghai Liu;Ming Gao;Jixiang Zhao;Yang Chen
    • Current Optics and Photonics
    • /
    • v.8 no.5
    • /
    • pp.484-492
    • /
    • 2024
  • In response to the difficulty of synchronously obtaining multiwavelength images for fast two-dimensional (2D) temperature measurement, a multispectral framing imaging optical system is designed, based on the segmented-aperture imaging method and asymmetric surface shape. The system adopts a common-aperture four-channel array structure to synchronously collect multiwavelength temperature-field images. To solve the problem of asymmetric aberration caused by being off-axis, a model of the relationship between incident and outgoing rays is established to calculate the asymmetric custom surface. The designed focal length of the optical system is 80 mm, the F-number is 1:3.8, and the operating wavelength range is 0.48-0.65 ㎛. The system is divided into four channels, corresponding to wavelengths of 0.48, 0.55, 0.58, and 0.65 ㎛ respectively. The modulation transfer function value of a single channel lens is higher than 0.6 in the full field of view at 35 lp/mm. The experimental results show that the asymmetric-custom-surface imaging system can capture clear multiwavelength images of a temperature field. The framing imaging system can capture clear images of multiwavelength temperature fields, with high consistency in images of different wavelengths. The designed optical system can provide reliable multiwavelength image data for 2D temperature-field measurement.

Comparison of the old-old aged women's pants pattern by lower body shape using 3D simulation

  • Cha, Su-Joung
    • Journal of the Korea Society of Computer and Information
    • /
    • v.23 no.7
    • /
    • pp.63-72
    • /
    • 2018
  • The purpose of this study was to compare and analyze the pants pattern of the lower body of 70-85 aged women. I tried to present excellent pants pattern that is convenient and suitable for the activities of elderly women. Through this, I tried to provide basic data necessary for making elderly women 's pants. As a result of evaluating the appearance of the pants pattern according to the body type, the fit of the type 2 was evaluated as the highest in the item except the position of the front waist line. For the objective evaluation of the 3D simulation, the air gap of the pants by the body part analysis showed that there was not much difference in the air gap around the waist circumference, hip circumference, thigh circumference, and knee circumference by applying the same drawing method and body size. However, in type 2, the air gap of thigh and knee circumference parts was larger than that of type 1 and type 3. Because type 2's legs were thin but it used same size of hemline. It was thought that it is necessary to adjust the space of front and back crotch length to 1 inch (2.54 cm) instead of 1.9 cm (3/4 inch) so that the waistline position of all three types can be set up a little to cover the abdomen. This study was conducted to investigate changes in body shape of elderly women and to develop appropriate pants patterns.

Comparison of Elderly Male's Bodice Pattern -focused on 70's and 80's

  • Cha, Su-Joung
    • Journal of the Korea Society of Computer and Information
    • /
    • v.25 no.6
    • /
    • pp.143-154
    • /
    • 2020
  • In this study, four types of bodice patterns of elderly males in their 70s and 80s were made, and appearance evaluation was conducted through 3D simulation. For objective evaluation, airgap, cross section, color distribution, etc. were analyzed to compare differences between patterns. The pattern shape of bodice for elderly males was a pattern without darts except for the L pattern. As a result of appearance evaluation for 3D simulation, the elderly males' pattern was found to have a significant difference among the patterns on the front, side, and back items, and the H pattern was analyzed as the best pattern in all items except the armhole shape on the side. As a result of evaluating the airgap, color distribution, and cross-section, the most suitable pattern for the elderly male's body type was analyzed as the H pattern. Based on the H pattern, it is thought that the development of a pattern suitable for the upper body shape of elderly male should be made.

Development of Color 3D Scanner Using Laser Structured-light Imaging Method

  • Ko, Youngjun;Yi, Sooyeong
    • Current Optics and Photonics
    • /
    • v.2 no.6
    • /
    • pp.554-562
    • /
    • 2018
  • This study presents a color 3D scanner based on the laser structured-light imaging method that can simultaneously acquire 3D shape data and color of a target object using a single camera. The 3D data acquisition of the scanner is based on the structured-light imaging method, and the color data is obtained from a natural color image. Because both the laser image and the color image are acquired by the same camera, it is efficient to obtain the 3D data and the color data of a pixel by avoiding the complicated correspondence algorithm. In addition to the 3D data, the color data is helpful for enhancing the realism of an object model. The proposed scanner consists of two line lasers, a color camera, and a rotation table. The line lasers are deployed at either side of the camera to eliminate shadow areas of a target object. This study addresses the calibration methods for the parameters of the camera, the plane equations covered by the line lasers, and the center of the rotation table. Experimental results demonstrate the performance in terms of accurate color and 3D data acquisition in this study.

Hard calibration of a structured light for the Euclidian reconstruction (3차원 복원을 위한 구조적 조명 보정방법)

  • 신동조;양성우;김재희
    • Proceedings of the IEEK Conference
    • /
    • 2003.11a
    • /
    • pp.183-186
    • /
    • 2003
  • A vision sensor should be calibrated prior to infer a Euclidian shape reconstruction. A point to point calibration. also referred to as a hard calibration, estimates calibration parameters by means of a set of 3D to 2D point pairs. We proposed a new method for determining a set of 3D to 2D pairs for the structured light hard calibration. It is simply determined based on epipolar geometry between camera image plane and projector plane, and a projector calibrating grid pattern. The projector calibration is divided two stages; world 3D data acquisition Stage and corresponding 2D data acquisition stage. After 3D data points are derived using cross ratio, corresponding 2D point in the projector plane can be determined by the fundamental matrix and horizontal grid ID of a projector calibrating pattern. Euclidian reconstruction can be achieved by linear triangulation. and experimental results from simulation are presented.

  • PDF