• Title/Summary/Keyword: 3-D numerical analysis

Search Result 2,002, Processing Time 0.034 seconds

Three-dimensional Vibration Analysis of Thick, Complete Conical Shells of Revolution (두꺼운 완전 원추형 회전셸의 3차원적 진동해석)

  • Sim Hyun-Ju;Kang Jae-Goon
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.4 s.97
    • /
    • pp.457-464
    • /
    • 2005
  • A three-dimensional (3-D) method of analysis is presented for determining the free vibration frequencies and mode shapes of thick, complete (not truncated) conical shells of revolution, Unlike conventional shell theories, which are mathematically two-dimensional (2-D). the present method is based upon the 3-D dynamic equations of elasticity. Displacement components $u_{r},\;u_{z},\;and\;u_{\theta}$ in the radial, axial, and circumferential directions, respectively, are taken to be sinusoidal in time, periodic in , and algebraic polynomials in the r and z directions. Potential (strain) and kinetic energies of the conical shells are formulated, the Ritz method is used to solve the eigenvalue problem, thus yielding upper bound values of the frequencies by minimizing the frequencies. As the degree of the polynomials is increased, frequencies converge to the exact values. Convergence to four-digit exactitude is demonstrated for the first five frequencies of theconical shells. Novel numerical results are presented for thick, complete conical shells of revolution based upon the 3-D theory. Comparisons are also made between the frequencies from the present 3-D Ritz method and a 2-D thin shell theory.

GOTHIC-3D APPLICABILITY TO HYDROGEN COMBUSTION ANALYSIS

  • LEE JUNG-JAE;LEE JIN-YONG;PARK GOON-CHERL;LEE BYUNG-CHUL;YOO HOJONG;KIM HYEONG-TAEK;OH SEUNG-JONG
    • Nuclear Engineering and Technology
    • /
    • v.37 no.3
    • /
    • pp.265-272
    • /
    • 2005
  • Severe accidents in nuclear power plants can cause hydrogen-generating chemical reactions, which create the danger of hydrogen combustion and thus threaten containment integrity. For containment analyses, a three-dimensional mechanistic code, GOTHIC-3D has been applied near source compartments to predict whether or not highly reactive gas mixtures can form during an accident with the hydrogen mitigation system working. To assess the code applicability to hydrogen combustion analysis, this paper presents the numerical calculation results of GOTHIC-3D for various hydrogen combustion experiments, including FLAME, LSVCTF, and SNU-2D. In this study, a technical base for the modeling oflarge- and small-scale facilities was introduced through sensitivity studies on cell size and bum modeling parameters. Use of a turbulent bum option of the eddy dissipation concept enabled scale-free applications. Lowering the bum parameter values for the flame thickness and the bum temperature limit resulted in a larger flame velocity. When applied to hydrogen combustion analysis, this study revealed that the GOTHIC-3D code is generally able to predict the combustion phenomena with its default bum modeling parameters for large-scale facilities. However, the code needs further modifications of its bum modeling parameters to be applied to either small-scale facilities or extremely fast transients.

Numerical Analysis of Magnetic Flux Density Distribution by an Openable Magnetic Flux Generator for MIAB Welding (MIVB 용접용 개폐형 자속발생기에 의한 자원밀도분포의 수치해석)

  • Ku Jin-Mo;Kim Jae-Woong
    • Journal of Welding and Joining
    • /
    • v.22 no.6
    • /
    • pp.50-56
    • /
    • 2004
  • MlAB(magnetically impelled arc butt) welding is a sort of pressure welding method by melting two pipe sections with high speed rotating arc and upsetting two pipes in the axial direction. The electro-magnetic force, the driving force of the arc rotation, is generated by interaction of arc current and magnetic field induced from the magnetic flux generator in the welding system. In this study, an openable coil system for the generation of magnetic flux and a 3-dimensional numerical model for analyzing the electro-magnetic field were proposed. Through the fundamental numerical analyses, a magnetic concentrator was adopted for smoothing the magnetic flux density distribution in the circumferential direction. And then a series of numerical analysis were performed for investigating the effect of system parameters on the magnetic flux density distribution in the interested welding area.. Numerical quantitative analyses showed that magnetic flux density distribution generated from the proposed coil system is mainly dependent on the exciting current in the coil and the position of coil or concentrator from the pipe outer surface. And the gap between pipe ends and arc current are also considered as important factors on arc rotating behavior.

Spillway Design by Using Hydraulic and Numerical Model Experiment - Case Study of HwaBuk Multipurpose Dam (수리 및 수치모형실험을 이용한 여수로 설계 - 화북다목적댐)

  • Kim, Dae-Geun;Choi, Ji-Woong;Kim, Chang-Si;Lee, Ji-Won
    • Journal of Korea Water Resources Association
    • /
    • v.38 no.3 s.152
    • /
    • pp.179-188
    • /
    • 2005
  • This study on the HwaBuk Multipurpose Dam showed that two- and three- dimensional numerical model experiments, as well as hydraulic model experiments, can be useful analysis tools for engineers. A commercially available RMA2, which solves the shallow water equations, and FLOW-3D, which solves the Reynolds averaged Navier-Stokes equations, were used to simulate the hydraulic model setup. Numerical simulation results on the following were compared with the hydraulic model results: the flow in the reservoir basin and the approaching channel; the discharge in the overflow weir; the water surface profiles in the rollway, chute, and stilling basin; and the pressure distributions in the rollway. It was shown that there is a reasonably good agreement between the numerical model and the hydraulic model for the most of computations. There were, however, some differences between the numerical simulation results and hydraulic model results for the hydraulic jump in the stilling basin because of air entrainment effect.

3D Finite Element Analysis of Fault Displacements in the Nobi Fault Zone, Japan

  • Choi, Young-Mook;Kim, Woo-Seok;Lee, Chul-Goo;Kim, Chang-Yong;Seo, Yong-Seok
    • The Journal of Engineering Geology
    • /
    • v.24 no.3
    • /
    • pp.323-332
    • /
    • 2014
  • The Nobi fault zone, which generated the 1891 Nobi Earthquake (M8.0), includes five or six faults distributed in and around Gifu and Aichi prefectures, Japan. Because large cities are located near the fault zone (e.g., Gifu and Nagoya), and because the zone will likely be reactivated in the future, relatively thorough surveys have been conducted on the 1891 Nobi earthquake event, examining the fault geometry, house collapse rate, and the magnitude and distribution of earthquake intensity and fault displacement. In this study, we calculated the earthquake slip along faults in the Nobi fault zone by applying a 3D numerical analysis. The analysis shows that a zone with slip displacements of up to 100 mm included all areas with house collapse rates of 100%. In addition, the maximum vertical displacement was approximately ${\pm}1700mm$, which is in agreement with the ${\pm}1400mm$ or greater vertical displacements obtained in previous studies. The analysis yielded a fault zone with slip displacements of > 30 mm that is coincident with areas in which house collapse rates were 60% of more. The analysis shows that the regional slip sense was coincident with areas of uplift and subsidence caused by the Nobi earthquake.

Finite Element Analysis of Residual Stress after Quenching and Element Removal of A1 Ring Rolls (알루미늄 링롤재의 급냉 및 요소제거 후 잔류응력의 유한요소해석)

  • 박성한;구송회;이방업;조원만;은일상
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.2 no.1
    • /
    • pp.31-40
    • /
    • 1998
  • To predict residual stresses of aluminum ring rolls after quenching and element removal, 2-D and 3-D thermal elasto-plastic analyses were performed. Strains measured by three step sectioning method were directly compared to those analysed using ABAQUS's element removal. Numerical residual stresses after quenching had similar tendency to measured ones after 2 step aging, but the difference between numerical and measured ones was large. The difference is the reason why there are nonuniform residual stress distributions to ring height direction due to small height of ring, It is judged that the increase of ring height will improve the accuracy of measured ones and decrease the difference. By direct comparison between 3-D numerical strains to simulate three step sectioning method and measured ones, the accuracy of measurement and analysis can be improved. It is concluded that there can be predicted the deformation behavior on machining complex shaped large structures with residual stresses.

  • PDF

Experimental and Numerical Approach for Warpage Characteristics of Plastic Orthogonal Stiffened Structure (플라스틱 직교 보강 구조물의 휨특성에 대한 실험과 해석적 접근)

  • Kim M.Y.;Cho Y.J.;Lee Sung-Hee
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1997-2000
    • /
    • 2005
  • In this work, the effects of orthogonal ribs on warpage of plastic structure through injection molding process were investigated. Three kinds of injection molds were prepared to perform injection molding experiments of orthogonal stiffened plastic plate. The warpage of each injection molded specimen was measured using 3D CMM. And plastic injection molding analysis with commercial code was performed for the presented model. Numerical results of injection molding analysis were compared with those of experiments. It was shown that orthogonal ribs have a significant effect on the warpage of the structure in both cases of experiment and numerical analysis.

  • PDF

Numerical Analysis on the Development of a Ventilation Opening Louver for Marine (선박용 환기구 루버 개발을 위한 수치해석)

  • Yi, Chung-Seob;Chin, Do-Hun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.16 no.1
    • /
    • pp.30-35
    • /
    • 2017
  • This study is about distributions of flow in a ventilation system used in a louver for marine. In this study, to describe the flow in the ventilation opening louver, 3-dimensional steady-state turbulence was assumed to govern the equation. The flow field with pressure distribution according to the inlet velocity at the louver types is also compared. Flow analysis was performed for the louver numerical analysis on two types. The numerical analysis results in the louver blade indicated increased flow resistance at type-1.

Numerical Study for Tunnel Shotcrete Lining Operated Stress Measurement Techique Development During a Construction (시공중 터널 숏크리트 라이닝 작용응력 측정기법 개발을 위한 수치해석적 연구)

  • Shin, Hyu-Seong;Kim, Dong-Gyou;Jung, Yong-Su;Hwang, Jae-Hong;Bae, Gyu-Jin
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.03a
    • /
    • pp.754-761
    • /
    • 2008
  • In general, stress measurement of existent shotcrete lining be used by pressure cells. but, measuring instrument is lost by high pressure at shotcrete lining construction and pressure cell's measurement value have to low believability by natural conditions like curing temperature. In this study, proposed techniques to measure without utilizing sensitive stress sensor in natural condition at point that want stress of shotcrete lining after shotcrete lining construction. Executed numerical analysis to forecast stress level that interact in tunnel shotcrete lining, measured strain of hole by load action through hole in shotcrete lining. 3D FEM(finite element method) is enforced through various parameters curing time of shotcrete lining, thickness, load condition. Different model cases applied by parametic study. As analysis result, it could grasp development possibility of method that propose this time because it could examine corelation with strain by near hole of shotcrete lining and stress about load condition.

  • PDF

Finite element analyses of the stability of a soil block reinforced by shear pins

  • Ouch, Rithy;Ukritchon, Boonchai;Pipatpongsa, Thirapong;Khosravi, Mohammad Hossein
    • Geomechanics and Engineering
    • /
    • v.12 no.6
    • /
    • pp.1021-1046
    • /
    • 2017
  • The assessment of slope stability is an essential task in geotechnical engineering. In this paper, a three-dimensional (3D) finite element analysis (FEA) was employed to investigate the performance of different shear pin arrangements to increase the stability of a soil block resting on an inclined plane with a low-interface friction plane. In the numerical models, the soil block was modeled by volume elements with linear elastic perfectly plastic material in a drained condition, while the shear pins were modeled by volume elements with linear elastic material. Interface elements were used along the bedding plane (bedding interface element) and around the shear pins (shear pin interface element) to simulate the soil-structure interaction. Bedding interface elements were used to capture the shear sliding of the soil on the low-interface friction plane while shear pin interface elements were used to model the shear bonding of the soil around the pins. A failure analysis was performed by means of the gravity loading method. The results of the 3D FEA with the numerical models were compared to those with the physical models for all cases. The effects of the number of shear pins, the shear pin locations, the different shear pin arrangements, the thickness and the width of the soil block and the associated failure mechanisms were discussed.