• Title/Summary/Keyword: 3-D map

Search Result 1,478, Processing Time 0.031 seconds

Reserch On The Fundamental Technology To Utilization Of Platform To Providing Mobile Underground Geospatial Infomation Map (모바일용 지하공간통합지도 제공 플랫폼 활용을 위한 기반 기술 연구)

  • LEE, Tae-Hyung;KIM, Hyun-Woo
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.23 no.4
    • /
    • pp.173-183
    • /
    • 2020
  • In the midst of the aging of underground facilities in urban areas and anxiety about road excavation safety accidents, the Ministry of Land, Infrastructure and Transport began to build Underground Geospatial Infomation Map from 2015 as part of the 「ground subsidence prevention measures」 and efficient use of underground spaces. So, the scope is spreading every year. The current Underground Geospatial Infomation Map information is web-based and is operated in a desktop environment, so it is true that there are some limitations in its use in a field environment such as an excavation construction site. The Underground Geospatial Infomation Map, built and operated in a web-based environment, is a large-scale 3D data. Therefore, in order to service by transmitting data to the field without delay, it is necessary to lighten the Underground Geospatial Infomation Map data. In addition, the current Underground Geospatial Infomation Map is not unified in data formats such as 3DS and COLLADA, and the coordinate system method is also different in relative coordinates and absolute coordinates. In this study, by analyzing domestic and overseas prior research and technical use cases, a mobile Underground Geospatial Infomation Map data format and a lightweight method were presented, and a technology development was conducted to create a mobile underground space integration map in the presented format. In addition, the weight reduction rate was tested by applying 3D data compression technology so that data can be transmitted quickly in the field, and technology was developed that can be used by decompressing 3D data compressed in the field. finally, it aims to supplement the technology experimentally developed in this study and conduct additional research to produce it as software that can be used in the excavation site and use it.

3D Generalization and Logical Error Correction for Digital Map Update (수치지도 갱신을 위한 3차원 일반화와 논리적 오류수정)

  • Lee, Jin-Hyung;Lee, Dong-Cheon;Park, Ki-Suk;Park, Chung
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2009.04a
    • /
    • pp.29-34
    • /
    • 2009
  • Map update is required to provide up-to-date information. In update process, the most adequate generalization is to be applied to all scales of maps simultaneously. Most of existing maps are composed of 2D data and represented in 2D space. However, maps for next generation are to be generated with 3D spatial information including ortho-images and DEMs. Therefore, 3D generalization is necessary for 3D digital map update. This paper proposes methods for 3D generalization and correction for logical errors possibly accompanied with generalization.

  • PDF

1D FN-MLCA and 3D Chaotic Cat Map Based Color Image Encryption (1차원 FN-MLCA와 3차원 카오틱 캣 맵 기반의 컬러 이미지 암호화)

  • Choi, Un Sook
    • Journal of Korea Multimedia Society
    • /
    • v.24 no.3
    • /
    • pp.406-415
    • /
    • 2021
  • The worldwide spread of the Internet and the digital information revolution have resulted in a rapid increase in the use and transmission of multimedia information due to the rapid development of communication technologies. It is important to protect images in order to prevent problems such as piracy and illegal distribution. To solve this problem, I propose a new digital color image encryption algorithm in this paper. I design a new pseudo-random number generator based on 1D five-neighborhood maximum length cellular automata (FN-MLCA) to change the pixel values of the plain image into unpredictable values. And then I use a 3D chaotic cat map to effectively shuffle the positions of the image pixel. In this paper, I propose a method to construct a new MLCA by modeling 1D FN-MLCA. This result is an extension of 1D 3-neighborhood CA and shows that more 1D MLCAs can be synthesized. The safety of the proposed algorithm is verified through various statistical analyses.

A Study on 3D Panoramic Generation using Depth-map (깊이지도를 이용한 3D 파노라마 생성에 관한 연구)

  • Cho, Seung-Il;Kim, Jong-Chan;Ban, Kyeong-Jin;Kim, Eung-Kon
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.6 no.6
    • /
    • pp.831-838
    • /
    • 2011
  • Computer vision research area, a division of computer graphics application area that creates realistic visualization in computer, conducts vigorously researches on developing realistic 3D model or virtual environment. As the popularization and development of 3D display makes common users easy to experience a solid 3D virtual reality, the demand for virtual reality contents are increasing. This paper proposes 3D panorama system using depth point location-based depth map generation method. 3D panorama using depth map gives an effect that makes users feel staying at real place and looking around nearby circumstances. Also, 3D panorama gives free sight point for both nearby object and remote one and provides solid 3D video.

Multi-scale 3D Panor ama Content Augmented System using Depth-map

  • Kim, Cheeyong;Kim, Eung-Kon;Kim, Jong-Chan
    • Journal of Korea Multimedia Society
    • /
    • v.17 no.6
    • /
    • pp.733-740
    • /
    • 2014
  • With the development and spread of 3D display, users can easily experience an augmented reality with 3D features. Therefore, the demand for content of an augmented reality is exponentially growing in various fields. A traditional augmented reality environment was generally created by CG(Computer Graphics) modelling production tools. However, this method takes too much time and efforts to create an augmented environment. To create an augmented environment similar to the real world, everything in the real world should be measured, gone through modeling, and located in an augmented environment. But the time and efforts spent in the creation don't produce the same environment as the real world, making it hard for users to feel the sense of reality. In this study, multi-scale 3D panorama content augmented system is suggested by using a depth-map. By finding matching features from images to add 3D features to an augmented environment, a depth-map is derived and embodied as panorama, producing high-quality augmented content system with a sense of reality. With this study, limits of 2D panorama technologies will be overcome and a sense of reality and immersion will be provided to users with a natural navigation.

Study on 2.5D Map Building and Map Merging Method for Rescue Robot Navigation (재난 구조용 로봇의 자율주행을 위한 지도작성 및 2.5D 지도정합에 관한 연구)

  • Kim, Su Ho;Shim, Jae Hong
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.4
    • /
    • pp.114-130
    • /
    • 2022
  • The purpose of this study was to investigate the possibility of increasing the efficiency of disaster relief rescue operations through collaboration among multiple aerial and ground robots. The robots create 2.5D maps, which are merged into a 2.5D map. The 2.5D map can be handled by a low-specification controller of an aerial robot and is suitable for ground robot navigation. For localization of the aerial robot, a six-degree-of-freedom pose recognition method using VIO was applied. To build a 2.5D map, an image conversion technique was employed. In addition, to merge 2.5D maps, an image similarity calculation technique based on the features on a wall was used. Localization and navigation were performed using a ground robot to evaluate the reliability of the 2.5D map. As a result, it was possible to estimate the location with an average and standard error of less than 0.3 m for the place where the 2.5D map was normally built, and there were only four collisions for the obstacle with the smallest volume. Based on the 2.5D map building and map merging system for the aerial robot used in this study, it is expected that disaster response work efficiency can be improved by combining the advantages of heterogeneous robots.

3D Detection of Obstacle Distribution and Mapping for Walking Guide of the Blind (시각 장애인 보행안내를 위한 장애물 분포의 3차원 검출 및 맵핑)

  • Yoon, Myoung-Jong;Jeong, Gu-Young;Yu, Kee-Ho
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.2
    • /
    • pp.155-162
    • /
    • 2009
  • In walking guide robot, a guide vehicle detects an obstacle distribution in the walking space using range sensors, and generates a 3D grid map to map the obstacle information and the tactile display. And the obstacle information is transferred to a blind pedestrian using tactile feedback. Based on the obstacle information a user plans a walking route and controls the guide vehicle. The algorithm for 3D detection of an obstacle distribution and the method of mapping the generated obstacle map and the tactile display device are proposed in this paper. The experiment for the 3D detection of an obstacle distribution using ultrasonic sensors is performed and estimated. The experimental system consisted of ultrasonic sensors and control system. In the experiment, the detection of fixed obstacles on the ground, the moving obstacle, and the detection of down-step are performed. The performance for the 3D detection of an obstacle distribution and space mapping is verified through the experiment.

Impulse Noise Removal of LRF for 3D Map Building Using a Hybrid Median Filter (3D 맵 빌딩을 위한 하이브리드 미디언 필터를 이용한 LRF의 임펄스 잡음 제거)

  • Hwang, Yo-Seop;Kim, Hyun-Woo;Kim, Tae-Jun;Lee, Jang-Myung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.10
    • /
    • pp.970-976
    • /
    • 2012
  • In this paper, a single LRF has been used to produce a 3D map for the mobile robot navigation. The 2D laser scanners are used for mobile robots navigation, where the laser scanner is applied to detect a certain level of area by the straight beam. Therefore it is limited to the usages of 2D obstacle detection and avoidance. In this research, it is designed to complement a mobile robot system to move up and down a single LRF along the yaw axis. During the up and down motion, the 2D data are stacked and manipulated to build a 3D map. Often a single LRF data are mixed with Gaussian and impulse noises. The impulse noises are removed out by the hybrid median filter designed in this research. The 2D data which are improved by deleting the impulse noises are layered to build the 3D map. Removing impulse noises while preserving the boundary is a main advantages of the hybrid median filter which has been used widely to improve the quality of images. The effectiveness of this hybrid median filter for rejecting the impulse noises has been verified through the real experiments. The performance of the hybrid median filter is evaluated in terms of PSNR (Peak Signal to Noise Ratio) and the processing time.

Map Error Measuring Mechanism Design and Algorithm Robust to Lidar Sparsity (라이다 점군 밀도에 강인한 맵 오차 측정 기구 설계 및 알고리즘)

  • Jung, Sangwoo;Jung, Minwoo;Kim, Ayoung
    • The Journal of Korea Robotics Society
    • /
    • v.16 no.3
    • /
    • pp.189-198
    • /
    • 2021
  • In this paper, we introduce the software/hardware system that can reliably calculate the distance from sensor to the model regardless of point cloud density. As the 3d point cloud map is widely adopted for SLAM and computer vision, the accuracy of point cloud map is of great importance. However, the 3D point cloud map obtained from Lidar may reveal different point cloud density depending on the choice of sensor, measurement distance and the object shape. Currently, when measuring map accuracy, high reflective bands are used to generate specific points in point cloud map where distances are measured manually. This manual process is time and labor consuming being highly affected by Lidar sparsity level. To overcome these problems, this paper presents a hardware design that leverage high intensity point from three planar surface. Furthermore, by calculating distance from sensor to the device, we verified that the automated method is much faster than the manual procedure and robust to sparsity by testing with RGB-D camera and Lidar. As will be shown, the system performance is not limited to indoor environment by progressing the experiment using Lidar sensor at outdoor environment.

The Research about Map Model of 3D Road Network for Low-carbon Freight Transportation (저탄소 화물운송체계 구현을 위한 3차원 도로망도 모델에 관한 연구)

  • Lee, Sang-Hoon
    • Spatial Information Research
    • /
    • v.20 no.4
    • /
    • pp.29-36
    • /
    • 2012
  • The low-carbon freight transportation system was introduced due to increase traffic congestion cost and carbon-dioxide for global climate change according to expanding city logistics demands. It is necessary to create 3D-based road network map for representing realistic road geometry with consideration of fuel consumption and carbon emissions. This study propose that 3D road network model expressed to realistic topography and road structure within trunk road for intercity freight through overlaying 2D-based transport-related thematic map and 1m-resolution DEM. The 3D-based road network map for the experimental road sections(Pyeongtaek harbor-Uiwang IC) was verified by GPS/INS survey and fuel consumption simulation. The results corresponded to effectively reflect realistic road geometry (RMSE=0.87m) except some complex structure such as overpass, and also actual fuel consumption. We expect that Green-based freight route planning and navigation system reflected on 3D geometry of complex road structure will be developed for effectively resolving energy and environmental problems.