• Title/Summary/Keyword: 3-D flow analysis

Search Result 1,506, Processing Time 0.032 seconds

Enlarge duct length optimization for suddenly expanded flows

  • Pathan, Khizar A.;Dabeer, Prakash S.;Khan, Sher A.
    • Advances in aircraft and spacecraft science
    • /
    • v.7 no.3
    • /
    • pp.203-214
    • /
    • 2020
  • In many applications like the aircraft or the rockets/missiles, the flow from a nozzle needs to be expanded suddenly in an enlarged duct of larger diameter. The enlarged duct is provided after the nozzle to maximize the thrust created by the flow from the nozzle. When the fluid is suddenly expanded in an enlarged duct, the base pressure is generally lower than the atmospheric pressure, which results in base drag. The objective of this research work is to optimize the length to diameter (L/D) ratio of the enlarged duct using the CFD analysis in the flow field from the supersonic nozzle. The flow from the nozzle drained in an enlarged duct, the thrust, and the base pressure are studied. The Mach numbers for the study were 1.5, 2.0 and 2.5. The nozzle pressure ratios (NPR) of the study were 2, 5 and 8. The L/D ratios of the study were 0.5, 1, 2, 3, 4, 5, 6, 7, 8, 9 and 10. Based on the results, it is concluded that the L/D ratio should be increased to an optimum value to reattach the flow to an enlarged duct and to increase the thrust. The supersonic suddenly expanded flow field is wave dominant, and the results cannot be generalized. The optimized L/D ratios for various combinations of flow and geometrical parameters are given in the conclusion section.

A Study on the Evaluation for the Application of a Comn CFD Code to Flow Analysis of a HAWTs (수평축 풍력발전용 터빈의 유동 해석을 위한 상용 CFD 코드의 적용성 평가에 관한 연구)

  • Kim, B. S.;Kim, J. H.;Nam, C. D.;Lee, Y. H.
    • 유체기계공업학회:학술대회논문집
    • /
    • 2002.12a
    • /
    • pp.396-401
    • /
    • 2002
  • The purpose of this 3-D numerical simulation is evaluate the application of a commercial CFD code to predict 3-D flow characteristics of wind turbine. The experimental approach, which has been main method of investigation, appears to be its limits, the cost increasing disproportionally with the size of the wind turbines, and is hence mostly limited to observing the phenomena. Hence, the use of Computational Fluid Dynamics (CFD) techniques and Wavier-Stokes solvers are considered a very serious contender. The flow solver CFX-TASCflow is employed in all computations presented in this paper. The 3-D flow separation and the wake distribution of 2 bladed Horizontal Axis Wind Turbines (HAWTs) are compared to Heuristic model and visualized result by NREL(National Renewable Energy Laboratory). Simulated 3-D flow separation structure on the rotor blade is very similar to Heuristic model and the wake structure of the wind turbine is good agree with visualized results.

  • PDF

Numerical study on flows within an shrouded centrifugal impeller passage (원심회전차 내부유도장에 관한 수치해석적 연구)

  • Kim, Seong-Won;Jo, Gang-Rae
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.10
    • /
    • pp.3272-3281
    • /
    • 1996
  • The flow analysis method which had been developed for the numerical calculation of 3-dimensional, incompressible and turbulent flow within an axial compressor was extended to the flow field within centrifugal impeller. In this method based on the SIMPLE(Semi Implicit Method Pressure Linked Equations) algorithm, the coordinate transformation was adopted and the standard k-.epsilon. model using wall function was used for turbulent flow analysis. The calculated flow fields have agreed very well with measurement results. Especially, 3-dimensional and viscous flow characteristics including secondary flows, jet-wake flow and decreased pressure rise along impeller passage, which can't be predicted by inviscid Q3D calculation were predicted very reasonably.

A Numerical Analysis on Flow Characteristics of Vertical Multi-stage Centrifugal Pump (입형 다단 원심펌프 유동특성에 관한 수치해석)

  • Mo J. O.;Kang S. J.;Song K. T.;Kim S. D.;Lee Y. H.
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.589-592
    • /
    • 2002
  • A commercial CFD code is applied to analyze the 3-D viscous flow field within vertical multi-stage centrifugal pump including impeller of centrifugal pump with 6 blades and guide vain with 11 blades. The numerical analysis of vertical multi-stage centrifugal pump is performed by changing flow rate from $8\;to\;26\;m^{3}/h$ at the constant 3500rpm. The characteristics such as total pressure coefficient, total head, water horse power, power efficiency are represented according to flow rate changing. In the future, we will need to perform flow calculation of vertical multi-stage centrifugal pump by considering meridional shape of impeller.

  • PDF

A Study on Evaluation for the Applicatioin of a CFD Code to Flow Analysis and an Estimate of Performance for HAWT (수평축 풍력발전용 터빈의 유동해석 및 성능예측에 대한 CFD의 적용성 평가에 관한 연구)

  • Kim, Beom-Seok;Kim, Jeong-Hwan;Kim, You-Taek;Nam, Chung-Do;Lee, Young-Ho
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.2192-2197
    • /
    • 2003
  • The purpose of this 3-D numerical simulation is evaluate the application of a commercial CFD code to predict 3-D flow and power characteristics of wind turbines. The experimental approach, which has been main method of investigation, appears to be its limits, the cost increasing with the size of the wind turbines, hence mostly limited to observing the phenomena on rotor blades. Therefore, the use of Computational Fluid Dynamics (CFD) techniques and Navier-Stokes solvers are considered a very serious contender. The flow solver CFX-TASCflow is employed in all computations in this paper. The 3-D flow separation and the wake distribution of 2 and 3 bladed Horizontal Axis Wind Turbines (HAWTs) are compared to Heuristic model and smoke-visualized experimental result by NREL(National Renewable Energy Laboratory). Simulated 3-D flow separation structure on the rotor blade is very similar to Heuristic model and the wake structure of the wind turbine is good consistent with smoke-visualized result. The calculated power of the 3 bladed rotor by CFD is compared with BEM results by TV-Delft. The CFD results of which is somewhat consist with BEM results, under an error less than 10%.

  • PDF

A Study on Flow Analysis and an Estimate of performance for HAWT by CFD (CFD에 의한 수평축 풍력발전용 터빈의 유동해석 및 성능예측에 관한 연구)

  • 김정환;김범석;김진구;남청도;이영호
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.27 no.7
    • /
    • pp.906-913
    • /
    • 2003
  • The purpose of this 3-D numerical simulation is to evaluate the application of a commercial CFD code to predict 3-D flow and power characteristics of wind turbines. The experimental approach, which has been main method of investigation, appears to be its limits, the cost increasing with the size of the wind turbines, hence mostly limited to observing the phenomena on rotor blades. Therefore. the use of Computational Fluid Dynamics (CFD) techniques and Navier-Stokes solvers are considered a very serious contender. The flow solver CFX-TASCflow is employed in all computations in this paper. The 3-D flow separation and the wake distribution of 2 and 3 bladed Horizontal Axis Wind Turbines (HAWTs) are compared to Heuristic model and smoke-visualized experimental result by NREL(National Renewable Energy Laboratory). Simulated 3-D flow separation structure on the rotor blade is very similar to Heuristic model and the wake structure of the wind turbine is good consistent with smoke-visualized result. The calculated power of the 3 bladed rotor by CFD is compared with BEM results by TU-Delft. The CFD results of which is somewhat consist with BEM results. under an error less than 10%.

Development of Microchip Removal Equipment Using Neodymium Permanent Magnets (네오디뮴 영구자석을 이용한 미세칩 제거장치의 개발)

  • Choi, Sung-Yun;Wang, Jun-hyeong;Wang, Duck Hyun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.3
    • /
    • pp.122-128
    • /
    • 2021
  • Machining operations require removal of chips to keep the coolant clean and fresh throughout the operation time. In this study, microchip removal equipment was developed using AutoCAD and CATIA programs for 3D modeling and 2D draft. In addition, the flow analysis and electromagnetic field analysis of the equipment were performed using the COMSOL Multiphysics program. The flow design of the coolant oil tank was realized on the basis of fluid analysis results. Further, on the basis of magnetic density analysis, a conveyer was designed for effectively removing metal microchips in the tank by using arrays of neodymium permanent magnets.

Study on Numerical Model of Leakage Flow at Gap between Compartments in a Building (건축물 구획실간 틈새에서의 누설유동에 대한 수치모델 연구)

  • Kim, Jung-Yup;Kim, Ji-Seok
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.25 no.10
    • /
    • pp.562-567
    • /
    • 2013
  • 1D-numerical analysis of the network algorithm with the orifice equation for the relationship between pressure difference and flowrate has been mostly used to analyse leakage flow at the gap. In this study, a 3D-numerical method applying momentum loss model to the gap region in the computational domain is represented to reflect effectively the effect of leakage flow by determining the proportion of pressure difference to air passage velocity. While the 3D-numerical method is verified through the computation of the two compartments model, the numerical analysis of the stack effect in a building stairway is performed. As the temperature of air outside drops, the pressure in the upper stairway and leakage flowrate through the gap in the door rise. The change of gap area does not have an effect on pressure in the stairway for the analysis conditions.

A Numerical Study of 3-D Flows in Spiral Tubes with Square Cross-Section (Spiral Tube 내에서의 3차원 유동 해석)

  • Hur Nahmkeon;Kim Seongwon
    • Journal of computational fluids engineering
    • /
    • v.4 no.1
    • /
    • pp.27-33
    • /
    • 1999
  • Spiral tube heat exchangers can find numerous applications in many engineering fields. Flow in spiral tubes is interest to engineers due to occurrence of secondary flow which enhances the cross-sectional mixing and the heat transfer rate. In the present study, an incompressible viscous 3-D flow in spiral tubes with rectangular cross-section of various torsion rate and Reynolds number is studied by using a finite volume method. It is shown that the axial velocity profile is affected by the secondary flow motion. Because there is some difference from correlation proposed by Hur et al., a lot of analysis and arrangement of experimental results are needed. This study showed the results of variation of hydrodynamic entry length for torsion and Re numbers.

  • PDF

Three-dimensional Analysis of Flow Characteristics for Intake Valve Design (흡기밸브 형상에 따른 3차원 유동특성 해석)

  • 김득상;이상진;조용석;엄인용
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.4
    • /
    • pp.1-6
    • /
    • 2003
  • Steady flow bench test is a practical, powerful and widely used in most engine manufacturers to give a design concept of a new engine. In order to use steady data as a performance index, it is necessary to build some database, which can correlate the port characteristics with engine data. However, it is very difficult to investigate all port shapes with experimental tools. The steady flow scheme is relatively simple and its results are bulk ones such as flow rate and momentum of flow. Therefore a CFD code can be easily applied to the port evaluation. In this study, the steady flow test was simulated through three-dimensional analysis on intake port design for comparing with experimental data and confirming the feasibility of applying analytic method . for this purpose, the effect of valve curvature on flow rate was estimated by a CFD code. Numerical results were compared with those of real steady flow tests. As a result, the results of 3-D analysis were almost consistent with experimental data.